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Professional Pathway

ü 10.2021 - now : Principal Investigator / BrainSIM Project Signal Processing Lab (SPL), Institute of Computer 
Science (ICS), Foundation for Research and Technology – Hellas (FORTH), Greece.

ü 04.2021 - 04.2022 : Principal Investigator / BRIEFING Project MediaCoding Team I3S laboratory, CNRS, Université 
Côte d’Azur, France .

ü 06.2018 - 04.2021 : Associate Researcher / ARCHERS and KRIPIS II Signal Processing Lab / Inst. of Computer 
Science, Prof. Panagiotis Tsakalides, Foundation for Research and Technology – Hellas, Greece.

ü 03.2012 - 03.2017 : Research Assistant MediaCoding Team, Dr. Marc Antonini, Prof. Lionel Fillatre, I3S laboratory, 
CNRS, Université Côte d’Azur, France.

ü 07.2012 - 09.2012 : Research Assistant Software & Knowledge Engineering Lab. Dr. Karampiperis, National 
Center for Scientific Research Demokritos, Greece

ü 09.2011 - 06.2012 : Research Assistant / Dr. Euripides Markou, Department of Computer Science & Biomedical 
Informatics, University of Central Greece (now University of Thessaly), Greece
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My Research Interests…

ü Neuro-inspired image processing

Goal: Utilize neuroscience models that approximate the structure and function of
the visual system in order to design and implement efficient algorithms according to
the visual perception.

ü Machine Learning-based image compression.

Goal: Use Machine Learning algorithms to identify the Regions of Interests (RoI)
within the visual scene to drive the bit-allocation with respect to the visual scene
content.

ü Computational Biology

Goal: Use Machine Learning algorithms to learn structural characteristics of
biological molecules (e.g. proteins) and predict their 3D shape.
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ü Digital Image Fundamentals

ü Image Acquisition

ü Image Transforms

ü Convolution Theorem

ü Morphological Operations

ü Multiresolution Analysis

ü Image Coding
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Course Outline

6



Effrosyni Doutsi | ADA-X

Image Perception
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Image Transform
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Image Enhancement
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Image Restoration
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Image Segmentation
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Image Description
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“ One picture is worth more than ten thousand words ” 
(Anonymous)



ü Digital Image Fundamentals

ü Image Acquisition

ü Image Transforms

ü Convolution Theorem

ü Morphological Operations

ü Multiresolution Analysis

ü Image Coding
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Course Outline
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How to capture an image?
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Was it always 
that easy to 
capture an 

image?



In 1826, Joseph Nicéphore Niépce took the world’s
first photograph with his a camera. The
photograph was taken from the upstair’s windows
of Niépce’s estate in the Burgundy region of
France. This image was captured via a process
known as heliography, which used Bitumen of
Judea coated onto a piece of glass or metal; the
Bitumen than hardened in proportion to the
amount of light that hit it.
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World’s first photograph
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Joseph Nicéphore Niépce
(1765 –1833) . 



In early 1920’s the Bartlane cable picture
transmission system reduced the time
required to transport a picture across the
Atlantic from more than a week to less than
three hours.
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History

17

Baudot tape used to transmit pictures by 
Bartlane system. Newspaper picture transmitted across the Atlantic.



In 1957, a team led by Russell A. Kirsch at the National Institute of Standards and
Technology of US developed a binary digital version of an existing technology, so
that alphanumeric characters, diagrams, photographs and other graphics could be
transferred into digital computer memory. One of the first photographs scanned was
a picture of Kirsch's infant son Walden.
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The first Digital Image
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Russell A. Kirsch 
(1929 –2020)

First digital photo of Kirsch’ son.



In 1964, the pictures of the Moon transmitted by Ranger 7 were processed by a
computer at the jet Propulsion Laboratory (Pasadena, California) to correct various
types of image distortion inherent in the on-board television camera.
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The first Moon picture

23
First Moon picture. Drawing of the Ranger 7.
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Applications
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Big Data Era
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The 5 Vs of Big Data

Effrosyni Doutsi | ADA-X 27



Definition

ü An image (from Latin: imago) is an artifact that depicts visual perception,
such as a photograph or other two-dimensional picture, that resembles a
subject—usually a physical object—and thus provides a depiction of it
(Wikipedia).

ü Digital images and digital video are, respectively, pictures and movies that
have been converted into a computer-readable binary format consisting of
logical 0s and 1s. Usually, by an image we mean a still picture that does not
change with time, whereas a video evolves with time and generally contains
moving and/or changing objects (Al Bovik, “Handbook of Image and Video
Processing,” Academic Press, 2000).

ü Monochrome image or simple image or still-image, refers to a two-
dimensional light function 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 denote spatial coordinates
and the value of 𝑓 at any point (𝑥, 𝑦) is proportional to the brightness of the
image at that point. (R. Gonzalez, R. Woods, “Digital Image Processing,”
Addison-Wesley, 1983).

What is an image?
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https://en.wikipedia.org/wiki/Latin_language
https://en.wikipedia.org/wiki/Visual_perception
https://en.wikipedia.org/wiki/Photograph
https://en.wikipedia.org/wiki/Two-dimensional_space
https://en.wikipedia.org/wiki/Physical_body
https://en.wikipedia.org/wiki/Depiction


Digital Image Representation
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ü A digital image is an image 𝑓(𝑥, 𝑦) that
has been discretized both in spatial
coordinates and in brightness.

ü You may consider a digital image as a
matrix whose row and column indices
identify a point in the image and the
corresponding matrix element value
identifies the gray level at that point.

ü The elements of such a digital array are
called image elements, picture elements
(pels), pixels.

ü The discretized brightness values
usually belong to the following interval

0 ≤ 𝑓 𝑥, 𝑦 ≤ 𝐺 − 1,

where 𝐺 = 2!, 𝑚 = 1,2, … denotes the
number of gray levels.

Cartesian Coordinates
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Relationship between Pixels

ü A pixel p at coordinates (𝑥, 𝑦) has four horizontal and vertical neighbors 
whose  coordinates are given by 

(𝑥 + 1, 𝑦), (𝑥 − 1, 𝑦), (𝑥, 𝑦 + 1), (𝑥, 𝑦 − 1)

ü This set of pixels, called the 4-neighbors of 𝑝, is denoted by 𝑁"(𝑝). 

ü Each pixel is a unit distance from (𝑥, 𝑦), and some of the neighbors of p lie 
outside the digital image if (𝑥, 𝑦) is on the border of the image. 

ü The four diagonal neighbors of 𝑝 have coordinates denoted by 𝑁#(𝑝). 

(𝑥 + 1, 𝑦 + 1), 𝑥 + 1, 𝑦 − 1 , 𝑥 − 1, 𝑦 + 1 , 𝑥 − 1, 𝑦 − 1

ü These points, together with the 4-neighbors, are called the 8-neighbors of p,
denoted by N8(p)

3 0 2

6 1 4

4 2 3



Gray Scale Images 

Effrosyni Doutsi | ADA-X 31

Lena Söderberg at ICIP Conference 
in 2015

Lena Image
Original image here

https://datafireball.com/2016/09/24/lena-the-origin-about-the-de-facto-test-image/


Gray Scale Images 
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ü Let 𝐼 𝑖, 𝑗 where 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … ,𝑀 be
a discretized grayscale image of 2! different
gray levels.

ü The number of bits required to store a
digital image is given by

𝑏 = 𝑁×𝑀×𝑚.

ü A group of 8-bits is commonly called 1 Byte.
Thus, the number of Bytes required to store
a digital image is given by

B= F×G×H
I .

ü The resolution of an image is strongly
dependent on 𝑁,𝑀,𝑚 . The higher these
parameters are increased, the closer the
digitized image will approximate the
original.



Image Resolution
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256x256 128x128 64x64

32x32 16x16 8x8

Original Grayscale 
Image

512x512



Colour Images 
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Original Color 
Image

Red Channel

Green Channel

Blue Channel

Reconstructed 
Color Image

𝑟 =
𝑅

𝑅 + 𝐺 + 𝐵

𝑔 =
𝐺

𝑅 + 𝐺 + 𝐵

𝑏 =
𝐵

𝑅 + 𝐺 + 𝐵 𝑟 + 𝑔 + 𝑏 = 1



Resolution of Colour Images
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256x256 128x128 64x64

32x32 16x16 8x8

Original Image
512x512



Electromagnetic Spectrum
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ü The electromagnetic spectrum covers
electromagnetic waves with frequencies
ranging from 1-1025 Hz, corresponding to
wavelengths from 1000m to a fraction of the
size of an atomic nucleus (1 Angstrom = 10-10

m = 0.1 nm).

ü The frequency range is separated into bands;
beginning at the low frequency / long-
wavelength (radio, TV) until the high
frequency / short wavelength (Gamma-rays).

The wavelength of a sine wave. Electromagnetic spectrum. 



The Visual System
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VISION
ü Begins in the eye which receives the

inputs, in the form of light.

ü Finishes in the brain which interprets
those inputs and gives us the
information we need from the data we
receive.

The Visual System
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Example of the digital acquisition process
2.3 ! Image Sensing and Acquisition 51

Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene element

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination”) source. (b) An
element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

and finite; that is,

(2.3-1)

The function may be characterized by two components: (1) the amount
of source illumination incident on the scene being viewed, and (2) the amount of il-
lumination reflected by the objects in the scene.Appropriately, these are called the
illumination and reflectance components and are denoted by and ,
respectively.The two functions combine as a product to form :

(2.3-2)

where

(2.3-3)

and

(2.3-4)

Equation (2.3-4) indicates that reflectance is bounded by 0 (total absorption)
and 1 (total reflectance). The nature of is determined by the illumina-
tion source, and is determined by the characteristics of the imaged ob-
jects. It is noted that these expressions also are applicable to images formed
via transmission of the illumination through a medium, such as a chest X-ray.

r (x, y)
i (x, y)

0 6 r (x, y) 6 1

0 6 i (x, y) 6 q

f(x, y) = i (x, y)r (x, y)

f(x, y)
r(x, y)i(x, y)

f(x, y)

0 6 f(x, y) 6 q

a
b c d e
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Sampling (statistics)
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Image Sampling
ü An image may be continuous with respect to the x- and y-coordinates, and also in amplitude.

ü To convert it to digital form, we have to sample the function in both coordinates and in
amplitude.

ü Digitizing the coordinate values is called sampling.

ü Digitizing the amplitude values is called quantization.54 Chapter 2 ! Digital Image Fundamentals

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

sampling limits established by the number of sensors in the other. Quantiza-
tion of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the plane
of an array sensor. Figure 2.17(b) shows the image after sampling and quanti-
zation. Clearly, the quality of a digital image is determined to a large degree by
the number of samples and discrete gray levels used in sampling and quantiza-
tion. However, as shown in Section 2.4.3, image content is an important con-
sideration in choosing these parameters.

2.4.2 Representing Digital Images
The result of sampling and quantization is a matrix of real numbers.We will use
two principal ways in this book to represent digital images.Assume that an image
f(x, y) is sampled so that the resulting digital image has M rows and N columns.
The values of the coordinates (x, y) now become discrete quantities. For nota-
tional clarity and convenience, we shall use integer values for these discrete co-
ordinates. Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
The next coordinate values along the first row of the image are represented as
(x, y)=(0, 1). It is important to keep in mind that the notation (0, 1) is used
to signify the second sample along the first row. It does not mean that these are
the actual values of physical coordinates when the image was sampled. Figure
2.18 shows the coordinate convention used throughout this book.

a b

GONZ02-034-074.II  29-08-2001  13:35  Page 54

54 Chapter 2 ! Digital Image Fundamentals

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

sampling limits established by the number of sensors in the other. Quantiza-
tion of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the plane
of an array sensor. Figure 2.17(b) shows the image after sampling and quanti-
zation. Clearly, the quality of a digital image is determined to a large degree by
the number of samples and discrete gray levels used in sampling and quantiza-
tion. However, as shown in Section 2.4.3, image content is an important con-
sideration in choosing these parameters.

2.4.2 Representing Digital Images
The result of sampling and quantization is a matrix of real numbers.We will use
two principal ways in this book to represent digital images.Assume that an image
f(x, y) is sampled so that the resulting digital image has M rows and N columns.
The values of the coordinates (x, y) now become discrete quantities. For nota-
tional clarity and convenience, we shall use integer values for these discrete co-
ordinates. Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
The next coordinate values along the first row of the image are represented as
(x, y)=(0, 1). It is important to keep in mind that the notation (0, 1) is used
to signify the second sample along the first row. It does not mean that these are
the actual values of physical coordinates when the image was sampled. Figure
2.18 shows the coordinate convention used throughout this book.

a b
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Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene element

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination”) source. (b) An el-
ement of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

2.3.4 A Simple Image Formation Model
As introduced in Section 1.1, we shall denote images by two-dimensional func-
tions of the form f(x, y). The value or amplitude of f at spatial coordinates
(x, y) is a positive scalar quantity whose physical meaning is determined by
the source of the image. Most of the images in which we are interested in this
book are monochromatic images, whose values are said to span the gray scale,
as discussed in Section 2.2. When an image is generated from a physical
process, its values are proportional to energy radiated by a physical source
(e.g., electromagnetic waves).As a consequence, f(x, y) must be nonzero and
finite; that is,

0<f(x, y)<q. (2.3-1)

The function f(x, y) may be characterized by two components: (1) the
amount of source illumination incident on the scene being viewed, and (2) the
amount of illumination reflected by the objects in the scene. Appropriately,
these are called the illumination and reflectance components and are denoted
by i(x, y) and r(x, y), respectively. The two functions combine as a product to
form f(x, y):

a
b c d e
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the

a b
c d
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Image Sampling

2.4 ! Image Sampling and Quantization 53
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the
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GONZ02-034-074.II  29-08-2001  13:35  Page 53

2.4 ! Image Sampling and Quantization 53

A B

A B

Sampling

A B A B

Q
u

a
n

t
iz

a
t
io

n

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the
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Original grayscale 
Image

Illustrate the intensity 
values of AB

Sampling the 
coordinate values

Digitize the 
intensity values 

We are interested in looking at the following questions:

ü How many samples should be taken so that no information is lost in the sampling process?

ü Under what sampling conditions a continuous image can be fully recovered from a set of
sampled values?
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Examples

Input signal 𝑓(𝑥)

ℎ 𝑥 = 𝑓(𝑥)𝑠(𝑥)

Sampling func[on 𝑠 𝑥
∆𝑥 = 0.1

Superimpose 𝑓 𝑥 , ℎ(𝑥)
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Examples

Input signal 𝑓(𝑥)

ℎ 𝑥 = 𝑓(𝑥)𝑠(𝑥)Superimpose 𝑓 𝑥 , ℎ(𝑥)

Sampling func[on 𝑠 𝑥
∆𝑥 = 0.5
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Examples

Input signal 𝑓(𝑥)

ℎ 𝑥 = 𝑓(𝑥)𝑠(𝑥)

Sampling function 𝑠 𝑥
∆𝑥 = 1

Superimpose 𝑓 𝑥 , ℎ(𝑥)
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Examples

Input signal 𝑓(𝑥)

ℎ 𝑥 = 𝑓(𝑥)𝑠(𝑥)

Sampling function 𝑠 𝑥
∆𝑥 = 2

Superimpose 𝑓 𝑥 , ℎ(𝑥)
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Examples

Input signal 𝑓(𝑥)

ℎ 𝑥 = 𝑓(𝑥)𝑠(𝑥)

Sampling function 𝑠 𝑥
∆𝑥 = 4

Superimpose 𝑓 𝑥 , ℎ(𝑥)
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Image Subsampling (256 gray levels)

2.4.3 Spatial and Gray-Level Resolution
Sampling is the principal factor determining the spatial resolution of an image. Ba-
sically, spatial resolution is the smallest discernible detail in an image. Suppose that
we construct a chart with vertical lines of width W,with the space between the lines
also having width W. A line pair consists of one such line and its adjacent space.
Thus, the width of a line pair is 2W, and there are 1/2W line pairs per unit distance.
A widely used definition of resolution is simply the smallest number of discernible
line pairs per unit distance; for example, 100 line pairs per millimeter.

Gray-level resolution similarly refers to the smallest discernible change in
gray level, but, as noted in Section 2.1.3, measuring discernible changes in gray
level is a highly subjective process. We have considerable discretion regarding
the number of samples used to generate a digital image, but this is not true for
the number of gray levels. Due to hardware considerations, the number of gray
levels is usually an integer power of 2, as mentioned in the previous section.
The most common number is 8 bits, with 16 bits being used in some applica-
tions where enhancement of specific gray-level ranges is necessary. Sometimes
we find systems that can digitize the gray levels of an image with 10 or 12 bits
of accuracy, but these are the exception rather than the rule.

When an actual measure of physical resolution relating pixels and the level
of detail they resolve in the original scene are not necessary, it is not uncommon
to refer to an L-level digital image of size M*N as having a spatial resolution
of M*N pixels and a gray-level resolution of L levels.We will use this termi-
nology from time to time in subsequent discussions, making a reference to ac-
tual resolvable detail only when necessary for clarity.

! Figure 2.19 shows an image of size 1024*1024 pixels whose gray levels are
represented by 8 bits. The other images shown in Fig. 2.19 are the results of

2.4 ! Image Sampling and Quantization 57

1024

512

256

128

64
32

FIGURE 2.19 A 1024*1024, 8-bit image subsampled down to size 32*32 pixels. The number of allowable
gray levels was kept at 256.

EXAMPLE 2.2:
Typical effects of
varying the
number of
samples in a
digital image.
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Image Resampling

58 Chapter 2 ! Digital Image Fundamentals

subsampling the 1024*1024 image. The subsampling was accomplished by
deleting the appropriate number of rows and columns from the original image.
For example, the 512*512 image was obtained by deleting every other row and
column from the 1024*1024 image. The 256*256 image was generated by
deleting every other row and column in the 512*512 image, and so on. The
number of allowed gray levels was kept at 256.

These images show the dimensional proportions between various sampling
densities, but their size differences make it difficult to see the effects resulting
from a reduction in the number of samples.The simplest way to compare these
effects is to bring all the subsampled images up to size 1024*1024 by row and
column pixel replication.The results are shown in Figs. 2.20(b) through (f). Fig-
ure 2.20(a) is the same 1024*1024, 256-level image shown in Fig. 2.19; it is re-
peated to facilitate comparisons.

Compare Fig. 2.20(a) with the 512*512 image in Fig. 2.20(b) and note that
it is virtually impossible to tell these two images apart. The level of detail lost
is simply too fine to be seen on the printed page at the scale in which these im-

FIGURE 2.20 (a) 1024*1024, 8-bit image. (b) 512*512 image resampled into 1024*1024 pixels by row and
column duplication. (c) through (f) 256*256, 128*128, 64*64, and 32*32 images resampled into
1024*1024 pixels.

a b c
d e f
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Effect of Reducing the Spatial Resolution
2.4 ! Image Sampling and Quantization 61

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250
dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for
clarity. They are not part of the data.

a b
c d
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Aliasing

ü Functions whose area under the
curve is finite can be represented
in terms of sines and cosines of
various frequencies.

ü The sine/cosine component with
the highest frequency determines
the highest “frequency content” of
the function.

ü Suppose that this highest
frequency is finite and that the
function is of unlimited duration
(these functions are called band-
limited functions).

Fourier J., “The Analytic Theory of Heat,” (1807).
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Aliasing

Nyquist - Shannon Sampling 
Theorem

ü If the function is sampled at a rate
equal to or greater than twice its
highest frequency, it is possible to
recover completely the original
function from its samples.

ü If the function is undersampled,
then a phenomenon called aliasing
corrupts the sampled image.

ü The corruption is in the form of
additional frequency components
being introduced into the sampled
function. These are called aliased
frequencies.

Oversampling

Perfect Sampling

Undersampling



Effrosyni Doutsi | ADA-X 65

Image Quantization
54 Chapter 2 ! Digital Image Fundamentals

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

sampling limits established by the number of sensors in the other. Quantiza-
tion of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the plane
of an array sensor. Figure 2.17(b) shows the image after sampling and quanti-
zation. Clearly, the quality of a digital image is determined to a large degree by
the number of samples and discrete gray levels used in sampling and quantiza-
tion. However, as shown in Section 2.4.3, image content is an important con-
sideration in choosing these parameters.

2.4.2 Representing Digital Images
The result of sampling and quantization is a matrix of real numbers.We will use
two principal ways in this book to represent digital images.Assume that an image
f(x, y) is sampled so that the resulting digital image has M rows and N columns.
The values of the coordinates (x, y) now become discrete quantities. For nota-
tional clarity and convenience, we shall use integer values for these discrete co-
ordinates. Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
The next coordinate values along the first row of the image are represented as
(x, y)=(0, 1). It is important to keep in mind that the notation (0, 1) is used
to signify the second sample along the first row. It does not mean that these are
the actual values of physical coordinates when the image was sampled. Figure
2.18 shows the coordinate convention used throughout this book.

a b
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ü In order to form a digital image, the gray-
level values also must be converted
(quantized) into discrete quantities.

ü The gray-level scale divided into 𝐿 discrete
levels, ranging from black to white

ü The continuous gray levels are quantized
simply by assigning one of the 𝐿 discrete gray
levels to each sample.

ü Due to processing, storage, and sampling
hardware considerations, the number of gray
levels typically is an integer power of 2:

𝐿 = 2$ .
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Number of storage bits 2.4 ! Image Sampling and Quantization 59

TABLE 2.1
Number of storage bits for various values of N and k. L is the number of intensity levels.

N/k 1 (L = 2) 2 (L = 4) 3 (L = 8) 4 (L = 16) 5 (L = 32) 6 (L = 64) 7 (L = 128) 8 (L = 256)

32 1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192

64 4,096 8,192 12,288 16,384 20,480 24,576 28,672 32,768

128 16,384 32,768 49,152 65,536 81,920 98,304 114,688 131,072

256 65,536 131,072 196,608 262,144 327,680 393,216 458,752 524,288

512 262,144 524,288 786,432 1,048,576 1,310,720 1,572,864 1,835,008 2,097,152

1024 1,048,576 2,097,152 3,145,728 4,194,304 5,242,880 6,291,456 7,340,032 8,388,608

2048 4,194,304 8,388,608 12,582,912 16,777,216 20,971,520 25,165,824 29,369,128 33,554,432

4096 16,777,216 33,554,432 50,331,648 67,108,864 83,886,080 100,663,296 117,440,512 134,217,728

8192 67,108,864 134,217,728 201,326,592 268,435,456 335,544,320 402,653,184 469,762,048 536,870,912

2.4.3 Spatial and Intensity Resolution
Intuitively, spatial resolution is a measure of the smallest discernible detail in
an image. Quantitatively, spatial resolution can be stated in a number of ways,
with line pairs per unit distance, and dots (pixels) per unit distance being
among the most common measures. Suppose that we construct a chart with
alternating black and white vertical lines, each of width W units (W can be
less than 1). The width of a line pair is thus 2W, and there are W line pairs
per unit distance. For example, if the width of a line is 0.1 mm, there are 5 line
pairs per unit distance (mm). A widely used definition of image resolution is
the largest number of discernible line pairs per unit distance (e.g., 100 line
pairs per mm). Dots per unit distance is a measure of image resolution used
commonly in the printing and publishing industry. In the U.S., this measure
usually is expressed as dots per inch (dpi). To give you an idea of quality,
newspapers are printed with a resolution of 75 dpi, magazines at 133 dpi,
glossy brochures at 175 dpi, and the book page at which you are presently
looking is printed at 2400 dpi.

The key point in the preceding paragraph is that, to be meaningful, mea-
sures of spatial resolution must be stated with respect to spatial units. Image
size by itself does not tell the complete story. To say that an image has, say, a
resolution pixels is not a meaningful statement without stating
the spatial dimensions encompassed by the image. Size by itself is helpful only
in making comparisons between imaging capabilities. For example, a digital
camera with a 20-megapixel CCD imaging chip can be expected to have a
higher capability to resolve detail than an 8-megapixel camera, assuming that
both cameras are equipped with comparable lenses and the comparison im-
ages are taken at the same distance.

Intensity resolution similarly refers to the smallest discernible change in in-
tensity level. We have considerable discretion regarding the number of sam-
ples used to generate a digital image, but this is not true regarding the number

1024 * 1024

1>2

𝑁 is the number of pixels 
𝐿 is the number of the discrete intensity levels
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EXAMPLE 2.3:
Typical effects of
varying the
number of
intensity levels in
a digital image.

! In this example, we keep the number of samples constant and reduce the
number of intensity levels from 256 to 2, in integer powers of 2. Figure 2.21(a)
is a CT projection image, displayed with (256 intensity levels).
Images such as this are obtained by fixing the X-ray source in one position,
thus producing a 2-D image in any desired direction. Projection images are
used as guides to set up the parameters for a CT scanner, including tilt, number
of slices, and range.

Figures 2.21(b) through (h) were obtained by reducing the number of bits
from to while keeping the image size constant at pixels.
The 256-, 128-, and 64-level images are visually identical for all practical pur-
poses. The 32-level image in Fig. 2.21(d), however, has an imperceptible set of

452 * 374k = 1k = 7

k = 8452 * 374

FIGURE 2.21
(a)
256-level image.
(b)–(d) Image
displayed in 128,
64, and 32
intensity levels,
while keeping the
image size
constant.

452 * 374,

a b
c d
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FIGURE 2.21
(Continued)
(e)–(h) Image
displayed in 16, 8,
4, and 2 intensity
levels. (Original
courtesy of 
Dr. David R.
Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

very fine ridge-like structures in areas of constant or nearly constant intensity
(particularly in the skull).This effect, caused by the use of an insufficient num-
ber of intensity levels in smooth areas of a digital image, is called false con-
touring, so called because the ridges resemble topographic contours in a map.
False contouring generally is quite visible in images displayed using 16 or less
uniformly spaced intensity levels, as the images in Figs. 2.21(e) through (h) show.

As a very rough rule of thumb, and assuming integer powers of 2 for conve-
nience, images of size pixels with 64 intensity levels and printed on a
size format on the order of are about the lowest spatial and intensity
resolution images that can be expected to be reasonably free of objectionable
sampling checkerboards and false contouring. !

5 * 5 cm
256 * 256

e f
g h
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very fine ridge-like structures in areas of constant or nearly constant intensity
(particularly in the skull).This effect, caused by the use of an insufficient num-
ber of intensity levels in smooth areas of a digital image, is called false con-
touring, so called because the ridges resemble topographic contours in a map.
False contouring generally is quite visible in images displayed using 16 or less
uniformly spaced intensity levels, as the images in Figs. 2.21(e) through (h) show.

As a very rough rule of thumb, and assuming integer powers of 2 for conve-
nience, images of size pixels with 64 intensity levels and printed on a
size format on the order of are about the lowest spatial and intensity
resolution images that can be expected to be reasonably free of objectionable
sampling checkerboards and false contouring. !
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e f
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Interpolation

Nearest  Neighbor
Resampling

Bilinear
Resampling

Bicubic
Resampling
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Linear Interpolation - Example

Παράδειγμα γραμμικής παρεμβολής εικόνας

1

1 2 3
4 5 6

I  
=  
 

2

1 0 2 0 3 0
0 0 0 0 0 0
4 0 5 0 6 0
0 0 0 0 0 0

I

 
 
 =
 
 
 

2

1 1.5 2 2.5 3 1.5
0 0 0 0 0 0
4 4.5 5 5.5 6 3
0 0 0 0 0 0

I

 
 
 =
 
 
 

2

1 1.5 2 2.5 3 1.5
2.5 3 3.5 4 4.5 2.25
4 4.5 5 5.5 6 3
2 2.25 2.5 2.75 3 1.5
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 
 
 =
 
 
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Εισαγωγή 
κενών  pixel

Παρεµβολή κατά γραµµές

Παρεµβολή 
κατά στήλες

Με διαδοχική εφαρμογή πρώτα κατά γραμμές και μετά κατά στήλες
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New entries

Row Interpolation

Column
Interpola[on
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Linear Interpolation - Example
• Τα προηγούμενα βήματα ισοδυναμούν με συνέλιξη της I2 με την

μάσκα H
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Row and Column Interpolation is equivalent to the convolution of the augmented matrix 𝐼% with the kernel 𝐻!!!!
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Image Enhancement 
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ü There is no general theory of image enhancement.

ü The principal objective of enhancement is to process an image so
that the result is more suitable than the original image for a
specific application!!

ü Establishing new image enhancement techniques is very much
problem oriented e.g. a method which is quite useful for
enhancing X-ray images may not be necessary for satellite
images.

ü The viewer is the ultimate assessor of how well an image
enhancement technique works.
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Image Enhancement Categories

80

ü Spatial Domain

ü This term refers to the image plane itself.

ü Direct manipulations of pixels in an image.

ü Frequency Domain

ü Modifying the Fourier transform of an image.

Reminder: Joseph Fourier developed a theory by proving that
complicated but periodic functions can be written as the sum of
sines and cosines.
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Spatial Domain

81

ü It refers to the aggregate of pixels composing an image as most of
the methods are procedures that operate directly on these pixels.

ü It is denoted by the following expression

𝑔(𝑥, 𝑦) = 𝑇 𝑓(𝑥, 𝑦) ,

where 𝑓(𝑥, 𝑦) is the input image, 𝑔(𝑥, 𝑦) is the new image and 𝑇 is
an operator on 𝑓 defined over some neighbourhood.

ü In addition, 𝑇 can operate on a set of input images, such as
performing the pixel-by-pixel sum of 𝐾 images for noise reduction.
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Pixel Neighborhood 
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(𝑥, 𝑦)

𝑦

𝑥

Origin

Fig. The 3x3 neighborhood of the pixel (𝑥, 𝑦) in an 8x8 image.
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Pixel Neighborhood 
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𝑦

𝑥
Fig. The 3x3 neighborhood of the pixel (𝑥, 𝑦) in an 8x8 image.
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Transformation function 𝑇

84

ü The simplest form of 𝑇 is when the neighborhood is of size 1x1 (a 
single pixel). 

ü In this case, 𝑔 depends only on the value of 𝑓 at (𝑥, 𝑦), and 𝑇 becomes 
a gray-level (also called an intensity or mapping) transformation 
function of the form 

𝑠 = 𝑇(𝑟),

where, for simplicity in notation, 𝑟 and 𝑠 are variables denoting, 
respectively, the gray level of 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) at any point (𝑥, 𝑦).
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Thresholding Function

85

This transformation produces an image of higher contrast than the

original by darkening the levels below a threshold value 𝑚 and

brightening the levels above the threshold in the original image. This

technique is known as contrast stretching.

3.1 ! Background 77
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proximations to a circle, sometimes are used, square and rectangular arrays are
by far the most predominant because of their ease of implementation.

The simplest form of T is when the neighborhood is of size 1*1 (that is, a
single pixel). In this case, g depends only on the value of f at (x, y), and T be-
comes a gray-level (also called an intensity or mapping) transformation func-
tion of the form

(3.1-2)

where, for simplicity in notation, r and s are variables denoting, respectively,
the gray level of f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has
the form shown in Fig. 3.2(a), the effect of this transformation would be to pro-
duce an image of higher contrast than the original by darkening the levels below
m and brightening the levels above m in the original image. In this technique,
known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s, toward black.The opposite ef-
fect takes place for values of r above m. In the limiting case shown in Fig. 3.2(b),
T(r) produces a two-level (binary) image. A mapping of this form is called a
thresholding function. Some fairly simple, yet powerful, processing approaches
can be formulated with gray-level transformations. Because enhancement at
any point in an image depends only on the gray level at that point, techniques
in this category often are referred to as point processing.

Larger neighborhoods allow considerably more flexibility. The general ap-
proach is to use a function of the values of f in a predefined neighborhood of
(x, y) to determine the value of g at (x, y). One of the principal approaches in
this formulation is based on the use of so-called masks (also referred to as filters,
kernels, templates, or windows). Basically, a mask is a small (say, 3*3) 2-D
array, such as the one shown in Fig. 3.1, in which the values of the mask coeffi-
cients determine the nature of the process, such as image sharpening. En-
hancement techniques based on this type of approach often are referred to as
mask processing or filtering. These concepts are discussed in Section 3.5.

s = T(r)

a b
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The simplest form of T is when the neighborhood is of size 1*1 (that is, a
single pixel). In this case, g depends only on the value of f at (x, y), and T be-
comes a gray-level (also called an intensity or mapping) transformation func-
tion of the form

(3.1-2)

where, for simplicity in notation, r and s are variables denoting, respectively,
the gray level of f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has
the form shown in Fig. 3.2(a), the effect of this transformation would be to pro-
duce an image of higher contrast than the original by darkening the levels below
m and brightening the levels above m in the original image. In this technique,
known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s, toward black.The opposite ef-
fect takes place for values of r above m. In the limiting case shown in Fig. 3.2(b),
T(r) produces a two-level (binary) image. A mapping of this form is called a
thresholding function. Some fairly simple, yet powerful, processing approaches
can be formulated with gray-level transformations. Because enhancement at
any point in an image depends only on the gray level at that point, techniques
in this category often are referred to as point processing.

Larger neighborhoods allow considerably more flexibility. The general ap-
proach is to use a function of the values of f in a predefined neighborhood of
(x, y) to determine the value of g at (x, y). One of the principal approaches in
this formulation is based on the use of so-called masks (also referred to as filters,
kernels, templates, or windows). Basically, a mask is a small (say, 3*3) 2-D
array, such as the one shown in Fig. 3.1, in which the values of the mask coeffi-
cients determine the nature of the process, such as image sharpening. En-
hancement techniques based on this type of approach often are referred to as
mask processing or filtering. These concepts are discussed in Section 3.5.

s = T(r)

a b
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There are 3 basic types of
functions used frequently for
image enhancement:

ü linear (negative and identity
transformations),

ü logarithmic (log and inverse-
log transformations),

ü power-law (nth power and
nth root transformations).

78 Chapter 3 ! Image Enhancement in the Spatial Domain

Some Basic Gray Level Transformations
We begin the study of image enhancement techniques by discussing gray-level
transformation functions.These are among the simplest of all image enhancement
techniques.The values of pixels, before and after processing, will be denoted by r
and s, respectively. As indicated in the previous section, these values are related
by an expression of the form s=T(r), where T is a transformation that maps a
pixel value r into a pixel value s. Since we are dealing with digital quantities, val-
ues of the transformation function typically are stored in a one-dimensional array
and the mappings from r to s are implemented via table lookups. For an 8-bit en-
vironment, a lookup table containing the values of T will have 256 entries.

As an introduction to gray-level transformations, consider Fig. 3.3, which
shows three basic types of functions used frequently for image enhancement: lin-
ear (negative and identity transformations), logarithmic (log and inverse-log
transformations), and power-law (nth power and nth root transformations).The
identity function is the trivial case in which output intensities are identical to
input intensities. It is included in the graph only for completeness.

3.2.1 Image Negatives
The negative of an image with gray levels in the range [0, L-1] is obtained by using
the negative transformation shown in Fig. 3.3, which is given by the expression

(3.2-1)s = L - 1 - r.

3.2
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FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.
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Linear Transformation
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The negative of an image with gray levels in the range [0, 𝐿 − 1] is
obtained by using the negative transformation, which is given by the
expression

𝑠 = 𝐿 − 1 − 𝑟. 3.2 ! Some Basic Gray Level Transformations 79

FIGURE 3.4
(a) Original
digital
mammogram.
(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

Reversing the intensity levels of an image in this manner produces the equiva-
lent of a photographic negative. This type of processing is particularly suited
for enhancing white or gray detail embedded in dark regions of an image, es-
pecially when the black areas are dominant in size. An example is shown in
Fig. 3.4. The original image is a digital mammogram showing a small lesion. In
spite of the fact that the visual content is the same in both images, note how
much easier it is to analyze the breast tissue in the negative image in this par-
ticular case.

3.2.2 Log Transformations
The general form of the log transformation shown in Fig. 3.3 is

(3.2-2)

where c is a constant, and it is assumed that r ! 0. The shape of the log curve
in Fig. 3.3 shows that this transformation maps a narrow range of low gray-level
values in the input image into a wider range of output levels.The opposite is true
of higher values of input levels. We would use a transformation of this type to
expand the values of dark pixels in an image while compressing the higher-level
values. The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 3.3
would accomplish this spreading/compressing of gray levels in an image. In fact,
the power-law transformations discussed in the next section are much more
versatile for this purpose than the log transformation. However, the log func-
tion has the important characteristic that it compresses the dynamic range of im-
ages with large variations in pixel values.A classic illustration of an application
in which pixel values have a large dynamic range is the Fourier spectrum, which
will be discussed in Chapter 4.At the moment, we are concerned only with the
image characteristics of spectra. It is not unusual to encounter spectrum values

s = c log (1 + r)

a b
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The general form of the log transformation is

𝑠 = 𝑐 log! 1 + 𝑟 ,

where 𝑐 is a constant, 𝑏 is the base of the logarithm and it is assumed that 𝑟 ≥ 0.80 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of
applying the log
transformation
given in
Eq. (3.2-2) with
c=1.

that range from 0 to or higher.While processing numbers such as these pre-
sents no problems for a computer, image display systems generally will not be
able to reproduce faithfully such a wide range of intensity values.The net effect
is that a significant degree of detail will be lost in the display of a typical Fouri-
er spectrum.

As an illustration of log transformations, Fig. 3.5(a) shows a Fourier spectrum
with values in the range 0 to 1.5*106.When these values are scaled linearly for
display in an 8-bit system, the brightest pixels will dominate the display, at the ex-
pense of lower (and just as important) values of the spectrum.The effect of this
dominance is illustrated vividly by the relatively small area of the image in
Fig. 3.5(a) that is not perceived as black. If, instead of displaying the values in this
manner, we first apply Eq. (3.2-2) (with c=1 in this case) to the spectrum val-
ues, then the range of values of the result become 0 to 6.2, a more manageable
number. Figure 3.5(b) shows the result of scaling this new range linearly and dis-
playing the spectrum in the same 8-bit display.The wealth of detail visible in this
image as compared to a straight display of the spectrum is evident from these pic-
tures. Most of the Fourier spectra seen in image processing publications have
been scaled in just this manner.

3.2.3 Power-Law Transformations
Power-law transformations have the basic form

(3.2-3)

where c and g are positive constants. Sometimes Eq. (3.2-3) is written as
to account for an offset (that is, a measurable output when the

input is zero). However, offsets typically are an issue of display calibration and
as a result they are normally ignored in Eq. (3.2-3). Plots of s versus r for vari-
ous values of g are shown in Fig. 3.6. As in the case of the log transformation,
power-law curves with fractional values of gmap a narrow range of dark input
values into a wider range of output values, with the opposite being true for high-

s = c(r + e)g

s = crg

106

a b
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𝑏F = 𝑀

(a) Fourier Spectrum
(𝑟 ∈ [0,1.5x106])

(b) Log Transform of Fourier Spectrum
(s ∈ [0 ,6.2] for 𝑐 = 1)
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FIGURE 3.6 Plots
of the equation
s=crg for
various values of
g (c=1 in all
cases).

er values of input levels. Unlike the log function, however, we notice here a
family of possible transformation curves obtained simply by varying g. As ex-
pected, we see in Fig. 3.6 that curves generated with values of g>1 have ex-
actly the opposite effect as those generated with values of g<1. Finally, we
note that Eq. (3.2-3) reduces to the identity transformation when c=g=1.

A variety of devices used for image capture, printing, and display respond ac-
cording to a power law. By convention, the exponent in the power-law equation
is referred to as gamma [hence our use of this symbol in Eq. (3.2-3)].The process
used to correct this power-law response phenomena is called gamma correc-
tion. For example, cathode ray tube (CRT) devices have an intensity-to-volt-
age response that is a power function, with exponents varying from
approximately 1.8 to 2.5.With reference to the curve for g=2.5 in Fig. 3.6, we
see that such display systems would tend to produce images that are darker
than intended. This effect is illustrated in Fig. 3.7. Figure 3.7(a) shows a simple
gray-scale linear wedge input into a CRT monitor. As expected, the output of
the monitor appears darker than the input, as shown in Fig. 3.7(b). Gamma cor-
rection in this case is straightforward.All we need to do is preprocess the input
image before inputting it into the monitor by performing the transformation

The result is shown in Fig. 3.7(c). When input into the same
monitor, this gamma-corrected input produces an output that is close in ap-
pearance to the original image, as shown in Fig. 3.7(d).A similar analysis would

s = r1!2.5 = r0.4.
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ü The basic form of the power-
law transformation is given as
follows

𝑠 = 𝑐(𝑟 + 𝜀)",

where 𝛾 and 𝑐 are positive
constants and 𝜀 is a small
quantity that satisfies that the
output exists even if the input
is zero.

ü This kind of transforms are
also known as Gamma
Transforms or Gamma
Correction.
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FIGURE 3.8
(a) Magnetic
resonance (MR)
image of a
fractured human
spine.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with
c=1 and
g=0.6, 0.4, and
0.3, respectively.
(Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

and spinal cord impingement. The fracture is visible near the vertical center of
the spine, approximately one-fourth of the way down from the top of the pic-
ture. Since the given image is predominantly dark, an expansion of gray levels
are desirable. This can be accomplished with a power-law transformation with
a fractional exponent. The other images shown in the Figure were obtained by
processing Fig. 3.8(a) with the power-law transformation function of Eq. (3.2-3).
The values of gamma corresponding to images (b) through (d) are 0.6, 0.4, and
0.3, respectively (the value of c was 1 in all cases). We note that, as gamma de-
creased from 0.6 to 0.4, more detail became visible.A further decrease of gamma

a b
c d
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c d
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(a) Original MR Image of 
Human Spine

(b) Gamma Correction
𝛾 = 0.6

(c) Gamma Correction
𝛾 = 0.4

(d) Gamma Correction
𝛾 = 0.3
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(a) Original Aerial images. (b) Gamma Correction
𝛾 = 3.0

(c) Gamma Correction
𝛾 = 4.0

(d) Gamma Correction
𝛾 = 5.0
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FIGURE 3.9
(a) Aerial image.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with
c=1 and
g=3.0, 4.0, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

to 0.3 enhanced a little more detail in the background, but began to reduce con-
trast to the point where the image started to have a very slight “washed-out”
look, especially in the background. By comparing all results, we see that the
best enhancement in terms of contrast and discernable detail was obtained with
g=0.4.A value of g=0.3 is an approximate limit below which contrast in this
particular image would be reduced to an unacceptable level. !

! Figure 3.9(a) shows the opposite problem of Fig. 3.8(a).The image to be en-
hanced now has a washed-out appearance, indicating that a compression of gray
levels is desirable. This can be accomplished with Eq. (3.2-3) using values of g
greater than 1. The results of processing Fig. 3.9(a) with g=3.0, 4.0, and 5.0
are shown in Figs. 3.9(b) through (d). Suitable results were obtained with gamma
values of 3.0 and 4.0, the latter having a slightly more appealing appearance be-
cause it has higher contrast.The result obtained with g=5.0 has areas that are
too dark, in which some detail is lost.The dark region to the left of the main road
in the upper left quadrant is an example of such an area. !

EXAMPLE 3.2:
Another
illustration of
power-law
transformations.

a b
c d
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ADVANTAGES
ü The form of piecewise

functions can be arbitrarily
complex.

ü Important functions can be
formulated only as piecewise
function.

DISADVANTAGES
ü They require considerably

more user input.

TYPES
1. Contrast Stretching

2. Gray-level Slicing

3. Bit-place Slicing
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(a) Low contrast. (b) Contrast Stretching. (c) Thresholding.
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3.2.4 Piecewise-Linear Transformation Functions
A complementary approach to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The principal advantage of piecewise
linear functions over the types of functions we have discussed thus far is that the
form of piecewise functions can be arbitrarily complex. In fact, as we will see
shortly, a practical implementation of some important transformations can be
formulated only as piecewise functions. The principal disadvantage of piece-
wise functions is that their specification requires considerably more user input.

Contrast stretching
One of the simplest piecewise linear functions is a contrast-stretching trans-
formation. Low-contrast images can result from poor illumination, lack of dy-
namic range in the imaging sensor, or even wrong setting of a lens aperture
during image acquisition.The idea behind contrast stretching is to increase the
dynamic range of the gray levels in the image being processed.

Figure 3.10(a) shows a typical transformation used for contrast stretching.
The locations of points Ar1, s1B and Ar2, s2B control the shape of the transformation
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FIGURE 3.10
Contrast
stretching.
(a) Form of
transformation
function. (b) A
low-contrast
image. (c) Result
of contrast
stretching.
(d) Result of
thresholding.
(Original image
courtesy of
Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)
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(b) Highlight values in [A,B] 
and preserve all others.

(c) Input image. (d) Results of using the 
Transform (a).

(a) Highlight values in [A,B] 
and reduce all others.
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FIGURE 3.11
(a) This
transformation
highlights range
[A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
[A, B] but
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representation of
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In terms of bit-plane extraction for an 8-bit image, it is not difficult to show
that the (binary) image for bit-plane 7 can be obtained by processing the input
image with a thresholding gray-level transformation function that (1) maps all
levels in the image between 0 and 127 to one level (for example, 0); and (2) maps
all levels between 129 and 255 to another (for example, 255).The binary image
for bit-plane 7 in Fig. 3.14 was obtained in just this manner. It is left as an exer-
cise (Problem 3.3) to obtain the gray-level transformation functions that would
yield the other bit planes.
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ü The histogram of an image with gray levels in range [0, 𝐿 − 1] is a discrete 
function ℎ 𝑟# = 𝑛#, where 𝑟# is the 𝑘th gray level and 𝑛# is the number of 
pixels in the image having gray level 𝑟#.

ü Histogram normalization -> dividing each of its values by the total number of 
pixels in the image, denoted as 𝑁

𝑝 𝑟# = $!
%

, for 𝑘 = 0,1, … , 𝐿 − 1.

ü In other words, 𝑝 𝑟# gives the probability of occurrence of gray level 𝑟#.

ü The sum of all components of a normalized histogram is equal to 1. 
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90 Chapter 3 ! Image Enhancement in the Spatial Domain

Dark image

Bright image

Low-contrast image

High-contrast image

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their cor-
responding histograms. (Original image courtesy of Dr. Roger Heady, Research School
of Biological Sciences, Australian National University, Canberra, Australia.)
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ü Every transformation is of the form 𝑠 = 𝑇(𝑟) where
0 ≤ 𝑟 ≤ 1 when the values have been normalized

ü We assume that the transformation function 𝑇(𝑟)
satisfies the following conditions:

a) 𝑇(𝑟) is single-valued and monotonically
increasing in the interval 0 ≤ 𝑟 ≤ 1 and

b) 0 ≤ 𝑇(𝑟) ≤ 1 for 0 ≤ 𝑟 ≤ 1 .

ü The inverse transformation from 𝑠 to 𝑟 requires that
𝑇(𝑟) is a strictly monotonically increasing function
and it is denoted

𝑟 = 𝑇&' (𝑠) for 0 ≤ 𝑠 ≤ 1.

3.3 ! Histogram Processing 91

3.3.1 Histogram Equalization
Consider for a moment continuous functions, and let the variable r represent the
gray levels of the image to be enhanced. In the initial part of our discussion we
assume that r has been normalized to the interval [0, 1], with r=0 represent-
ing black and r=1 representing white. Later, we consider a discrete formula-
tion and allow pixel values to be in the interval [0, L-1].

For any r satisfying the aforementioned conditions, we focus attention on
transformations of the form

s=T(r) 0 ! r ! 1 (3.3-1)

that produce a level s for every pixel value r in the original image. For reasons
that will become obvious shortly, we assume that the transformation function
T(r) satisfies the following conditions:

(a) T(r) is single-valued and monotonically increasing in the interval
0 ! r ! 1; and

(b) 0 ! T(r) ! 1 for 0 ! r ! 1.

The requirement in (a) that T(r) be single valued is needed to guarantee that the
inverse transformation will exist, and the monotonicity condition preserves
the increasing order from black to white in the output image.A transformation
function that is not monotonically increasing could result in at least a section
of the intensity range being inverted, thus producing some inverted gray levels
in the output image. While this may be a desirable effect in some cases, that is
not what we are after in the present discussion. Finally, condition (b) guarantees
that the output gray levels will be in the same range as the input levels. Fig-
ure 3.16 gives an example of a transformation function that satisfies these two
conditions. The inverse transformation from s back to r is denoted

(3.3-2)

It can be shown by example (Problem 3.8) that even if T(r) satisfies conditions
(a) and (b), it is possible that the corresponding inverse may fail to be sin-
gle valued.

T-1(s)

r = T-1(s)  0 ! s ! 1.

T(r)

0 rk 1

t

r

s

sk=T(rk)

FIGURE 3.16 A
gray-level
transformation
function that is
both single valued
and
monotonically
increasing.
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122 Chapter 3 ! Intensity Transformations and Spatial Filtering
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FIGURE 3.17 
(a) Monotonically
increasing
function, showing
how multiple
values can map to
a single value.
(b) Strictly
monotonically
increasing
function. This is a
one-to-one
mapping, both
ways.

†Recall that a function is monotonically increasing if for is a strictly mo-
notonically increasing function if for Similar definitions apply to monotonically
decreasing functions.

r2 7 r1.T(r2) 7 T(r1)
(r)Tr2 7 r1.T(r2) Ú T(r1)T(r)

3.3.1 Histogram Equalization
Consider for a moment continuous intensity values and let the variable r de-
note the intensities of an image to be processed. As usual, we assume that r is
in the range with representing black and repre-
senting white. For r satisfying these conditions, we focus attention on transfor-
mations (intensity mappings) of the form

(3.3-1)

that produce an output intensity level s for every pixel in the input image hav-
ing intensity r. We assume that:

(a) is a monotonically† increasing function in the interval 
and

(b) for

In some formulations to be discussed later, we use the inverse

(3.3-2)

in which case we change condition (a) to

(a ) is a strictly monotonically increasing function in the interval

The requirement in condition (a) that be monotonically increasing
guarantees that output intensity values will never be less than corresponding
input values, thus preventing artifacts created by reversals of intensity. Condi-
tion (b) guarantees that the range of output intensities is the same as the
input. Finally, condition (a ) guarantees that the mappings from s back to r
will be one-to-one, thus preventing ambiguities. Figure 3.17(a) shows a function

¿

T(r)

0 … r … L - 1.
T(r)¿

r = T -1(s)  0 … s … L - 1

0 … r … L - 1.0 … T(r) … L - 1

0 … r … L - 1;T(r)

s = T(r)  0 … r … L - 1

r = L - 1r = 0[0, L - 1],

a b
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3.3 ! Histogram Processing 129

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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3.3 ! Histogram Processing 129

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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3.3 ! Histogram Processing 129

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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3.3 ! Histogram Processing 129

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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ü Assume a 3-bit image (𝐿 = 8 levels) of size 64×64 pixels (𝑀𝑁 = 4096).

ü Assume that the intensity levels are integers in the range [0 , 𝐿 − 1] = [0,7].

ü We are given the following data:

126 Chapter 3 ! Intensity Transformations and Spatial Filtering

The discrete form of the transformation in Eq. (3.3-4) is

(3.3-8)

Thus, a processed (output) image is obtained by mapping each pixel in the
input image with intensity into a corresponding pixel with level in the
output image, using Eq. (3.3-8). The transformation (mapping) in this
equation is called a histogram equalization or histogram linearization trans-
formation. It is not difficult to show (Problem 3.10) that this transformation
satisfies conditions (a) and (b) stated previously in this section.

T(rk)
skrk

=
(L - 1)

MN a
k

j = 0
nj  k = 0, 1, 2, Á , L - 1

sk = T(rk) = (L - 1)a
k

j = 0
pr(rj)

790 0.19
1023 0.25
850 0.21
656 0.16
329 0.08
245 0.06
122 0.03
81 0.02r7 = 7

r6 = 6
r5 = 5
r4 = 4
r3 = 3
r2 = 2
r1 = 1
r0 = 0

pr(rk) = nk>MNnkrk
TABLE 3.1
Intensity
distribution and
histogram values
for a 3-bit,

digital
image.
64 * 64

EXAMPLE 3.5:
A simple
illustration of
histogram
equalization.

! Before continuing, it will be helpful to work through a simple example.
Suppose that a 3-bit image of size pixels has
the intensity distribution shown in Table 3.1, where the intensity levels are in-
tegers in the range 

The histogram of our hypothetical image is sketched in Fig. 3.19(a). Values
of the histogram equalization transformation function are obtained using 
Eq. (3.3-8). For instance,

Similarly,

and This trans-
formation function has the staircase shape shown in Fig. 3.19(b).

s2 = 4.55, s3 = 5.67, s4 = 6.23, s5 = 6.65, s6 = 6.86, s7 = 7.00.

s1 = T(r1) = 7a
1

j = 0
pr(rj) = 7pr(r0) + 7pr(r1) = 3.08

s0 = T(r0) = 7a
0

j = 0
pr(rj) = 7pr(r0) = 1.33

[0, L - 1] = [0, 7].

(MN = 4096)64 * 64(L = 8)
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(a) Original Histogram of an 3-bit image .

3.3 ! Histogram Processing 127

rk

pr(rk)
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7.0

5.6
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sk

ps(sk)

0 1 2 3 4 5 6 7
rk

sk

0 1 2 3 4 5 6 7

T(r)

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (c) Equalized histogram.

At this point, the s values still have fractions because they were generated
by summing probability values, so we round them to the nearest integer:

These are the values of the equalized histogram. Observe that there are only
five distinct intensity levels. Because was mapped to there are
790 pixels in the histogram equalized image with this value (see Table 3.1).
Also, there are in this image 1023 pixels with a value of and 850 pixels
with a value of However both and were mapped to the same
value, 6, so there are pixels in the equalized image with this
value. Similarly, there are pixels with a value of 7 in
the histogram equalized image. Dividing these numbers by yielded
the equalized histogram in Fig. 3.19(c).

Because a histogram is an approximation to a PDF, and no new allowed in-
tensity levels are created in the process, perfectly flat histograms are rare in
practical applications of histogram equalization. Thus, unlike its continuous
counterpart, it cannot be proved (in general) that discrete histogram equaliza-
tion results in a uniform histogram. However, as you will see shortly, using Eq.
(3.3-8) has the general tendency to spread the histogram of the input image so
that the intensity levels of the equalized image span a wider range of the in-
tensity scale. The net result is contrast enhancement. !

We discussed earlier in this section the many advantages of having intensity
values that cover the entire gray scale. In addition to producing intensities that
have this tendency, the method just derived has the additional advantage that
it is fully “automatic.” In other words, given an image, the process of histogram
equalization consists simply of implementing Eq. (3.3-8), which is based on in-
formation that can be extracted directly from the given image, without the

MN = 4096
(245 + 122 + 81) = 448

(656 + 329) = 985
r4r3s2 = 5.

s1 = 3

s0 = 1,r0 = 0

s3 = 5.67: 6 s7 = 7.00: 7

s2 = 4.55: 5 s6 = 6.86: 7

s1 = 3.08: 3 s5 = 6.65: 7

s0 = 1.33: 1 s4 = 6.23: 6

a b c (b) Transformation function. (c) Equalized Histogram.
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ü Arithmetic operations involving images are performed on a
pixel-by-pixel basis between two or more images. E.g.
subtraction of two images results in a new image whose pixel at
coordinates (𝑥, 𝑦) is the difference between the pixels in that
same location in the two images being subtracted.

ü The actual mechanics of implementing arithmetic operation
can be done sequentially, one pixel at a time, or in parallel,
where all operations are performed simultaneously.

ü The four arithmetic operations are: Addition, Subtraction,
Multiplication and Division.
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ü The difference between two
images 𝑓(𝑥, 𝑦) and
ℎ 𝑥, 𝑦 , expressed as

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) – ℎ(𝑥, 𝑦)

is obtained by computing the
difference between all pairs of
corresponding pixels from 𝑓 and
ℎ.

ü The key usefulness of subtraction
is the enhancement of differences
between images.

110 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.28
(a) Original
fractal image.
(b) Result of
setting the four
lower-order bit
planes to zero.
(c) Difference
between (a) and
(b).
(d) Histogram-
equalized
difference image.
(Original image
courtesy of Ms.
Melissa D. Binde,
Swarthmore
College,
Swarthmore, PA).

3.4.1 Image Subtraction
The difference between two images f(x, y) and h(x, y), expressed as

(3.4-1)

is obtained by computing the difference between all pairs of corresponding pix-
els from f and h. The key usefulness of subtraction is the enhancement of dif-
ferences between images. We illustrate this concept by returning briefly to the
discussion in Section 3.2.4, where we showed that the higher-order bit planes of
an image carry a significant amount of visually relevant detail, while the lower
planes contribute more to fine (often imperceptible) detail. Figure 3.28(a) shows
the fractal image used earlier to illustrate the concept of bit planes. Figure 3.28(b)
shows the result of discarding (setting to zero) the four least significant bit planes
of the original image. The images are nearly identical visually, with the excep-
tion of a very slight drop in overall contrast due to less variability of the gray-
level values in the image of Fig. 3.28(b). The pixel-by-pixel difference between
these two images is shown in Fig. 3.28(c). The differences in pixel values are so
small that the difference image appears nearly black when displayed on an 8-bit

g(x, y) = f(x, y) - h(x, y),

a b
c d
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an image carry a significant amount of visually relevant detail, while the lower
planes contribute more to fine (often imperceptible) detail. Figure 3.28(a) shows
the fractal image used earlier to illustrate the concept of bit planes. Figure 3.28(b)
shows the result of discarding (setting to zero) the four least significant bit planes
of the original image. The images are nearly identical visually, with the excep-
tion of a very slight drop in overall contrast due to less variability of the gray-
level values in the image of Fig. 3.28(b). The pixel-by-pixel difference between
these two images is shown in Fig. 3.28(c). The differences in pixel values are so
small that the difference image appears nearly black when displayed on an 8-bit

g(x, y) = f(x, y) - h(x, y),

a b
c d
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FIGURE 3.28
(a) Original
fractal image.
(b) Result of
setting the four
lower-order bit
planes to zero.
(c) Difference
between (a) and
(b).
(d) Histogram-
equalized
difference image.
(Original image
courtesy of Ms.
Melissa D. Binde,
Swarthmore
College,
Swarthmore, PA).

3.4.1 Image Subtraction
The difference between two images f(x, y) and h(x, y), expressed as

(3.4-1)

is obtained by computing the difference between all pairs of corresponding pix-
els from f and h. The key usefulness of subtraction is the enhancement of dif-
ferences between images. We illustrate this concept by returning briefly to the
discussion in Section 3.2.4, where we showed that the higher-order bit planes of
an image carry a significant amount of visually relevant detail, while the lower
planes contribute more to fine (often imperceptible) detail. Figure 3.28(a) shows
the fractal image used earlier to illustrate the concept of bit planes. Figure 3.28(b)
shows the result of discarding (setting to zero) the four least significant bit planes
of the original image. The images are nearly identical visually, with the excep-
tion of a very slight drop in overall contrast due to less variability of the gray-
level values in the image of Fig. 3.28(b). The pixel-by-pixel difference between
these two images is shown in Fig. 3.28(c). The differences in pixel values are so
small that the difference image appears nearly black when displayed on an 8-bit

g(x, y) = f(x, y) - h(x, y),

a b
c d
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(a) Original Image (b) Setting the Four lower-
bit planes to zero

(c) Difference 
between (a) and (b)

(d) Histogram-equalized 
difference image
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ü Consider a noisy image 𝑔(𝑥, 𝑦) formed by the addition of noise
ℎ(𝑥, 𝑦) to an original image 𝑓(𝑥, 𝑦); that is,

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ℎ(𝑥, 𝑦)

where the assumption is that at every pair of coordinates (𝑥, 𝑦) the
noise is un- correlated and has zero average value.

ü Reminder: The variance of a random variable 𝑥 with mean 𝑚 is
defined as 𝐸 (𝑥 − 𝑚)( , where 𝐸 . is the expected value of the
argument. The covariance of two random variables 𝑥) and 𝑥* is
defined as 𝐸 (𝑥) −𝑚))(𝑥* −𝑚*) . If the variables are uncorrelated,
their covariance is 0.
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ü If the noise satisfies the constraints just stated, it can be shown that if an
image �̅�(𝑥, 𝑦) is formed by averaging 𝐾 different noisy images,

�̅� 𝑥, 𝑦 =
1
𝐾
R
)+'

,

𝑔)(𝑥, 𝑦) .

ü Then, it follows that

𝐸 �̅�(𝑥, 𝑦) = 𝑓 𝑥, 𝑦 and      𝜎-.(0,2)( = '
,
𝜎$(0,2)( ,

where 𝐸 �̅�(𝑥, 𝑦) is the expected value of �̅�, and 𝜎-.(0,2)( and 𝜎$(0,2)( are
the variances of �̅� and 𝑛, all at coordinated (𝑥, 𝑦).
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114 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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(a) Original Image (b) Noisy Image
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114 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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114 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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(a) Original Image (b) Averaging K = 8 Images (c) Difference between 
(a) and (b)

(d) Histogram of (c)
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114 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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3.4 ! Enhancement Using Arithmetic/Logic Operations 115

FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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(a) Original Image (b) Averaging K = 16 Images (c) Difference between 
(a) and (b)

(d) Histogram of (c)
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114 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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(a) Original Image (b) Averaging K = 64 Images (c) Difference between 
(a) and (b)

(d) Histogram of (c)
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114 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. !
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.
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(a) Original Image (b) Averaging K = 128 Images (c) Difference between 
(a) and (b)

(d) Histogram of (c)
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ü Some neighborhood operations work with the values of the image
pixels in the neighborhood and the corresponding values of a
subimage that has the same dimensions as the neighborhood.

ü The subimage is called a filter, mask, kernel, template, or window.

ü The values in a filter subimage are referred to as coefficients,
rather than pixels.

ü Spatial filtering is the filtering operations that are performed
directly on the pixels of an image.
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𝑦

𝑥

The process consists 

simply of moving the 

filter mask from point to 

point in an image. 
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Image 𝑓

Kernel 𝑔



f(x-1,y-1) f(x-1,y) f(x-1,y+1)

f(x,y-1) f(x,y) f(x,y+1)

f(x+1,y-1) f(x+1,y) f(x+1,y+1)
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Image 𝑓

g(-1,-1) g(-1,0) g(-1,1)

g(0,-1) g(0,0) g(0,1)

g(1,-1) g(1,0) g(1,1)

Kernel 𝑔
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At each point (𝑥, 𝑦), the 

response 𝑅 of the filter at 

that point is calculated by a 

sum of products of the 

filter coefficients and the 

corresponding image pixels 

in the area spanned by the 

filter mask 

h= 𝑔 ∘ 𝑓 = 𝑔 −1,−1 𝑓 𝑥 − 1, 𝑦 − 1 + 𝑔 −1, 0 𝑓 𝑥 − 1, 𝑦 + ⋯

+ 𝑔 0, 0 𝑓 𝑥, 𝑦 + ⋯ + 𝑔 1, 0 𝑓 𝑥 + 1, 𝑦 + 𝑔 1, 1 𝑓 𝑥 + 1, 𝑦 + 1 .

f(x-1,y-1) f(x-1,y) f(x-1,y+1)

f(x,y-1) f(x,y) f(x,y+1)

f(x+1,y-1) f(x+1,y) f(x+1,y+1)

g(-1,-1) g(-1,0) g(-1,1)

g(-1,0) g(0,0) g(0,1)

g(1,-1) g(1,0) g(1,1)
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ü CorrelaKon is the mathemaKcal operaKon on two funcKons 𝑓, 𝑔 that produces a third
funcKon ℎ.

ü This new funcKon expresses how the shape of function 𝑓 is modified by the shape of
function 𝑔. Correlation is denoted as follows:

ℎ = 𝑓 ∘ 𝑔

ü The mathematical 2D discrete correlation is given by:

ℎ 𝑥, 𝑦 = R
)+&4

54

R
*+&4

54

𝑔 𝑖, 𝑗 𝑓 𝑥 + 𝑖, 𝑦 + 𝑗 ,

where 𝑓 represents the input image to be correlated with the kernel 𝑔 resulting in a new
output image ℎ. The indices 𝑥, 𝑦 are concerned with the image matrices and the indices
𝑖, 𝑗 deal with that of the kernel. If the size of the kernel involved in correlation is 𝑁×𝑁
then the indices 𝑖, 𝑗 will range from −𝑁/2 to 𝑁/2 where 𝑁 is usually an odd number.



1 29 13 2 3 20 17 26

24 33 32 7 9 10 4 2

14 10 2 21 1 18 22 21

15 7 4 14 19 3 10 13

16 14 8 16 4 17 38 7

11 25 6 2 3 31 36 21

24 10 3 9 11 28 21 10

33 2 19 7 10 22 6 25

Effrosyni Doutsi | ADA-X

Numerical Example

125

Image

1 2 1

2 4 2

1 2 1

Kernel

∗

ℎ = 𝑔 ∘ 𝑓 = 1×21 + 2×1 + 1×18 + 2×14 + 4×19 + 2×3 + 1×16 + 2×4 + 1×17 = 192.
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At each point (𝑥, 𝑦), the 

response 𝑅 of the filter at 

that point is calculated by a 

sum of products of the 

filter coefficients and the 

corresponding image pixels 

in the area spanned by the 

filter mask 

h= 𝑔 ∗ 𝑓 = 𝑔 1, 1 𝑓 𝑥 − 1, 𝑦 − 1 + 𝑔 1, 0 𝑓 𝑥 − 1, 𝑦 + ⋯

+ 𝑔 0, 0 𝑓 𝑥, 𝑦 + ⋯ + 𝑔 −1, 0 𝑓 𝑥 + 1, 𝑦 + 𝑔 −1,− 1 𝑓 𝑥 + 1, 𝑦 + 1 .

f(x-1,y-1) f(x-1,y) f(x-1,y+1)

f(x,y-1) f(x,y) f(x,y+1)

f(x+1,y-1) f(x+1,y) f(x+1,y+1)

g(1,1) g(1,0) g(1,-1)

g(1,0) g(0,0) g(0,-1)

g(-1,1) g(-1,0) g(-1,-1)
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ü Convolution is the mathematical operation on two functions 𝑓, 𝑔 that produces a
third function ℎ.

ü This new function expresses how the shape of function 𝑓 is modified by the
shape of function 𝑔. Convolution is denoted as follows:

ℎ = 𝑓 ∗ 𝑔

ü The mathematical 2D discrete convolution is given by:

ℎ 𝑥, 𝑦 = R
)+&4

54

R
*+&4

54

𝑔 𝑖, 𝑗 𝑓 𝑥 − 𝑖, 𝑦 − 𝑗 ,

where 𝑓 represents the input image to be convolved with the kernel 𝑔 resulting
in a new output image ℎ. The indices 𝑥, 𝑦 are concerned with the image matrices
and the indices 𝑖, 𝑗 deal with that of the kernel. If the size of the kernel involved
in convolution is 𝑁×𝑁 then the indices 𝑖, 𝑗 will range from −𝑁/2 to 𝑁/2 where
𝑁 is usually an odd number.



1 29 13 2 3 20 17 26

24 33 32 7 9 10 4 2

14 10 2 21 1 18 22 21

15 7 4 14 19 3 10 13

16 14 8 16 4 17 38 7

11 25 6 2 3 31 36 21

24 10 3 9 11 28 21 10

33 2 19 7 10 22 6 25
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Image

1 2 1

2 4 2

1 2 1

Kernel

∗

ℎ = 𝑔 ∗ 𝑓 = 1×17 + 2×4 + 1×16 + 2×3 + 4×19 + 2×14 + 1×18 + 2×1 + 1×21 = 192.



Effrosyni Doutsi | ADA-X

2D Convolution

129

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

At each point (𝑥, 𝑦), the 

response 𝑅 of the filter at that 

point is calculated by a sum of 

products of the filter coefficients 

and the corresponding image 

pixels in the area spanned by the 

filter mask 

ℎ 𝑥, 𝑦 = 𝑔 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦 = R
)+&4

54

R
*+&4

54

𝑔 𝑖, 𝑗 𝑓 𝑥 − 𝑖, 𝑦 − 𝑗 ,
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✗ ✓ ✓
✗ ✓ ✓
✗ ✓ ✓

✗ ✗ ✗
✓ ✓ ✓
✓ ✓ ✓

✓ ✓ ✗
✓ ✓ ✗
✗ ✗ ✗

Padding Approaches
ü Zero
ü Symmetric
ü Circular
ü Replicate
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Solution → Padding for a 3x3 kernel
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Solution → Padding for a 5x5 kernel
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0 0 0 0 0 0 0 00 0
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Attention!
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≠

Symmetric 
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ü The response f a smoothing, linear
spatial filter is simply the average of
the pixels contained in the
neighborhood of the filter mask.

ü These filters sometimes are called
averaging filters.

ü By replacing the value of every pixel in
an image by the average of the gray
levels in the neighbor- hood

ü this process results in an image with
reduced “sharp” transitions in gray
levels.

120 Chapter 3 ! Image Enhancement in the Spatial Domain
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FIGURE 3.34 Two
3*3 smoothing
(averaging) filter
masks. The
constant multipli
er in front of each
mask is equal to
the sum of the
values of its
coefficients, as is
required to
compute an
average.

from using an insufficient number of gray levels, as discussed in Section 2.4.3.
A major use of averaging filters is in the reduction of “irrelevant” detail in an
image. By “irrelevant” we mean pixel regions that are small with respect to the
size of the filter mask. This latter application is illustrated later in this section.

Figure 3.34 shows two 3*3 smoothing filters. Use of the first filter yields the
standard average of the pixels under the mask.This can best be seen by substi-
tuting the coefficients of the mask into Eq. (3.5-3):

which is the average of the gray levels of the pixels in the 3*3 neighborhood
defined by the mask. Note that, instead of being 1!9, the coefficients of the fil-
ter are all 1’s. The idea here is that it is computationally more efficient to have
coefficients valued 1. At the end of the filtering process the entire image is di-
vided by 9.An m*n mask would have a normalizing constant equal to 1!mn.
A spatial averaging filter in which all coefficients are equal is sometimes called
a box filter.

The second mask shown in Fig. 3.34 is a little more interesting. This mask
yields a so-called weighted average, terminology used to indicate that pixels are
multiplied by different coefficients, thus giving more importance (weight) to
some pixels at the expense of others. In the mask shown in Fig. 3.34(b) the pixel
at the center of the mask is multiplied by a higher value than any other, thus giv-
ing this pixel more importance in the calculation of the average.The other pix-
els are inversely weighted as a function of their distance from the center of the
mask. The diagonal terms are further away from the center than the orthogo-
nal neighbors (by a factor of ) and, thus, are weighed less than these imme-
diate neighbors of the center pixel.The basic strategy behind weighing the center
point the highest and then reducing the value of the coefficients as a function
of increasing distance from the origin is simply an attempt to reduce blurring
in the smoothing process.We could have picked other weights to accomplish the
same general objective. However, the sum of all the coefficients in the mask of
Fig. 3.34(b) is equal to 16, an attractive feature for computer implementation be-
cause it has an integer power of 2. In practice, it is difficult in general to see dif-
ferences between images smoothed by using either of the masks in Fig. 3.34, or
similar arrangements, because the area these masks span at any one location in
an image is so small.
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R = 1
9

 a
9

i=1
zi ,

a b
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from using an insufficient number of gray levels, as discussed in Section 2.4.3.
A major use of averaging filters is in the reduction of “irrelevant” detail in an
image. By “irrelevant” we mean pixel regions that are small with respect to the
size of the filter mask. This latter application is illustrated later in this section.

Figure 3.34 shows two 3*3 smoothing filters. Use of the first filter yields the
standard average of the pixels under the mask.This can best be seen by substi-
tuting the coefficients of the mask into Eq. (3.5-3):

which is the average of the gray levels of the pixels in the 3*3 neighborhood
defined by the mask. Note that, instead of being 1!9, the coefficients of the fil-
ter are all 1’s. The idea here is that it is computationally more efficient to have
coefficients valued 1. At the end of the filtering process the entire image is di-
vided by 9.An m*n mask would have a normalizing constant equal to 1!mn.
A spatial averaging filter in which all coefficients are equal is sometimes called
a box filter.

The second mask shown in Fig. 3.34 is a little more interesting. This mask
yields a so-called weighted average, terminology used to indicate that pixels are
multiplied by different coefficients, thus giving more importance (weight) to
some pixels at the expense of others. In the mask shown in Fig. 3.34(b) the pixel
at the center of the mask is multiplied by a higher value than any other, thus giv-
ing this pixel more importance in the calculation of the average.The other pix-
els are inversely weighted as a function of their distance from the center of the
mask. The diagonal terms are further away from the center than the orthogo-
nal neighbors (by a factor of ) and, thus, are weighed less than these imme-
diate neighbors of the center pixel.The basic strategy behind weighing the center
point the highest and then reducing the value of the coefficients as a function
of increasing distance from the origin is simply an attempt to reduce blurring
in the smoothing process.We could have picked other weights to accomplish the
same general objective. However, the sum of all the coefficients in the mask of
Fig. 3.34(b) is equal to 16, an attractive feature for computer implementation be-
cause it has an integer power of 2. In practice, it is difficult in general to see dif-
ferences between images smoothed by using either of the masks in Fig. 3.34, or
similar arrangements, because the area these masks span at any one location in
an image is so small.
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ü Noise: The most obvious application of smoothing is noise reduction,
because random noise typically consists of sharp transitions in gray
levels.

ü Edges: The sharp transitions in gray levels characterize the edges
which almost always are desirable features of an image), so averaging
filters have the undesirable side effect that they blur edges.

ü Contours: The smoothing of false contours that result from using an
insufficient number of gray levels.
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Standard Average Filter
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ü The standard average filter can best be seen by
substituting the coefficients of the mask.

𝑅 =
1
9
R
)+'

6

𝑧)

which is the average of the gray levels of the
pixels in the 3×3 neighborhood defined by the
mask.

ü An 𝑚×𝑛 mask would have a normalizing constant 
equal to '

7$
.

ü A spatial averaging filter in which all coefficients 
are equal is sometimes called a box filter. 
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from using an insufficient number of gray levels, as discussed in Section 2.4.3.
A major use of averaging filters is in the reduction of “irrelevant” detail in an
image. By “irrelevant” we mean pixel regions that are small with respect to the
size of the filter mask. This latter application is illustrated later in this section.

Figure 3.34 shows two 3*3 smoothing filters. Use of the first filter yields the
standard average of the pixels under the mask.This can best be seen by substi-
tuting the coefficients of the mask into Eq. (3.5-3):

which is the average of the gray levels of the pixels in the 3*3 neighborhood
defined by the mask. Note that, instead of being 1!9, the coefficients of the fil-
ter are all 1’s. The idea here is that it is computationally more efficient to have
coefficients valued 1. At the end of the filtering process the entire image is di-
vided by 9.An m*n mask would have a normalizing constant equal to 1!mn.
A spatial averaging filter in which all coefficients are equal is sometimes called
a box filter.

The second mask shown in Fig. 3.34 is a little more interesting. This mask
yields a so-called weighted average, terminology used to indicate that pixels are
multiplied by different coefficients, thus giving more importance (weight) to
some pixels at the expense of others. In the mask shown in Fig. 3.34(b) the pixel
at the center of the mask is multiplied by a higher value than any other, thus giv-
ing this pixel more importance in the calculation of the average.The other pix-
els are inversely weighted as a function of their distance from the center of the
mask. The diagonal terms are further away from the center than the orthogo-
nal neighbors (by a factor of ) and, thus, are weighed less than these imme-
diate neighbors of the center pixel.The basic strategy behind weighing the center
point the highest and then reducing the value of the coefficients as a function
of increasing distance from the origin is simply an attempt to reduce blurring
in the smoothing process.We could have picked other weights to accomplish the
same general objective. However, the sum of all the coefficients in the mask of
Fig. 3.34(b) is equal to 16, an attractive feature for computer implementation be-
cause it has an integer power of 2. In practice, it is difficult in general to see dif-
ferences between images smoothed by using either of the masks in Fig. 3.34, or
similar arrangements, because the area these masks span at any one location in
an image is so small.
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Weighted Average Filter
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ü This terminology is used to indicate that pixels
are multiplied by different coefficients, thus
giving more importance (weight) to some pixels
at the expense of others.

ü The basic strategy is simply an attempt to
reduce blurring in the smoothing process as
follows

ü the center point is weighted by the highest
value

ü the value of the coefficients as a function of
increasing distance from the origin.
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from using an insufficient number of gray levels, as discussed in Section 2.4.3.
A major use of averaging filters is in the reduction of “irrelevant” detail in an
image. By “irrelevant” we mean pixel regions that are small with respect to the
size of the filter mask. This latter application is illustrated later in this section.

Figure 3.34 shows two 3*3 smoothing filters. Use of the first filter yields the
standard average of the pixels under the mask.This can best be seen by substi-
tuting the coefficients of the mask into Eq. (3.5-3):

which is the average of the gray levels of the pixels in the 3*3 neighborhood
defined by the mask. Note that, instead of being 1!9, the coefficients of the fil-
ter are all 1’s. The idea here is that it is computationally more efficient to have
coefficients valued 1. At the end of the filtering process the entire image is di-
vided by 9.An m*n mask would have a normalizing constant equal to 1!mn.
A spatial averaging filter in which all coefficients are equal is sometimes called
a box filter.

The second mask shown in Fig. 3.34 is a little more interesting. This mask
yields a so-called weighted average, terminology used to indicate that pixels are
multiplied by different coefficients, thus giving more importance (weight) to
some pixels at the expense of others. In the mask shown in Fig. 3.34(b) the pixel
at the center of the mask is multiplied by a higher value than any other, thus giv-
ing this pixel more importance in the calculation of the average.The other pix-
els are inversely weighted as a function of their distance from the center of the
mask. The diagonal terms are further away from the center than the orthogo-
nal neighbors (by a factor of ) and, thus, are weighed less than these imme-
diate neighbors of the center pixel.The basic strategy behind weighing the center
point the highest and then reducing the value of the coefficients as a function
of increasing distance from the origin is simply an attempt to reduce blurring
in the smoothing process.We could have picked other weights to accomplish the
same general objective. However, the sum of all the coefficients in the mask of
Fig. 3.34(b) is equal to 16, an attractive feature for computer implementation be-
cause it has an integer power of 2. In practice, it is difficult in general to see dif-
ferences between images smoothed by using either of the masks in Fig. 3.34, or
similar arrangements, because the area these masks span at any one location in
an image is so small.
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Gaussian Filter
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Η Γκαουσιανή σαν φίλτρο εξοµάλυνσης

Κ. ∆ελήµπασης 11/04

Gaussian 64x64 with σ = 10. Gaussian 64x64 with σ = 4. 
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1st Example (1/2) 
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122 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.35 (a) Original image, of size 500*500 pixels. (b)–(f) Results of smoothing
with square averaging filter masks of sizes n=3, 5, 9, 15, and 35, respectively.The black
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points.The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50*120 pixels.
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122 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.35 (a) Original image, of size 500*500 pixels. (b)–(f) Results of smoothing
with square averaging filter masks of sizes n=3, 5, 9, 15, and 35, respectively.The black
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points.The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50*120 pixels.
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(d) Average Filter n = 9 (e) Average Filter n = 15 (f) Average Filter n = 35

122 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.35 (a) Original image, of size 500*500 pixels. (b)–(f) Results of smoothing
with square averaging filter masks of sizes n=3, 5, 9, 15, and 35, respectively.The black
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points.The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50*120 pixels.
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122 Chapter 3 ! Image Enhancement in the Spatial Domain

FIGURE 3.35 (a) Original image, of size 500*500 pixels. (b)–(f) Results of smoothing
with square averaging filter masks of sizes n=3, 5, 9, 15, and 35, respectively.The black
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points.The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50*120 pixels.
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2nd Example
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3.6 ! Smoothing Spatial Filters 123

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15*15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)

15*15 averaging mask to this image.We see that a number of objects have ei-
ther blended with the background or their intensity has diminished considerably.
It is typical to follow an operation like this with thresholding to eliminate ob-
jects based on their intensity. The result of using the thresholding function of
Fig. 3.2(b) with a threshold value equal to 25% of the highest intensity in the
blurred image is shown in Fig. 3.36(c). Comparing this result with the original
image, we see that it is a reasonable representation of what we would consider
to be the largest, brightest objects in that image.

3.6.2 Order-Statistics Filters
Order-statistics filters are nonlinear spatial filters whose response is based on
ordering (ranking) the pixels contained in the image area encompassed by
the filter, and then replacing the value of the center pixel with the value de-
termined by the ranking result.The best-known example in this category is the
median filter, which, as its name implies, replaces the value of a pixel by the
median of the gray levels in the neighborhood of that pixel (the original value
of the pixel is included in the computation of the median). Median filters are
quite popular because, for certain types of random noise, they provide excel-
lent noise-reduction capabilities, with considerably less blurring than linear
smoothing filters of similar size. Median filters are particularly effective in
the presence of impulse noise, also called salt-and-pepper noise because of its
appearance as white and black dots superimposed on an image.

The median, j, of a set of values is such that half the values in the set are less
than or equal to j, and half are greater than or equal to j. In order to perform
median filtering at a point in an image, we first sort the values of the pixel in
question and its neighbors, determine their median, and assign this value to that
pixel. For example, in a 3*3 neighborhood the median is the 5th largest value,
in a 5*5 neighborhood the 13th largest value, and so on.When several values

a b c
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(a) Original NASA image (b) Average Filter 15x15 (c) Thresholding
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Order-statistics Filters
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ü Order-statistics filters are nonlinear spatial filters whose response
is based on

ü ordering (ranking) the pixels contained in the image area
encompassed by the filter,

ü replacing the value of the center pixel with the value determined
by the ranking result.

ü The best-known example in this category is the median filter.

ü Median filters provide excellent noise-reduction capabilities, with
considerably less blurring than linear smoothing filters of similar
size, the presence of impulse noise, also called salt-and-pepper noise
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Median Filter
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124 Chapter 3 ! Image Enhancement in the Spatial Domain

in a neighborhood are the same, all equal values are grouped. For example, sup-
pose that a 3*3 neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100).
These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a
median of 20. Thus, the principal function of median filters is to force points
with distinct gray levels to be more like their neighbors. In fact, isolated clusters
of pixels that are light or dark with respect to their neighbors, and whose area
is less than n2!2 (one-half the filter area), are eliminated by an n*n median
filter. In this case “eliminated” means forced to the median intensity of the
neighbors. Larger clusters are affected considerably less.

Although the median filter is by far the most useful order-statistics filter in
image processing, it is by no means the only one. The median represents the
50th percentile of a ranked set of numbers, but the reader will recall from basic
statistics that ranking lends itself to many other possibilities. For example, using
the 100th percentile results in the so-called max filter, which is useful in finding
the brightest points in an image. The response of a 3*3 max filter is given by
R=max Ezk |k=1, 2,p , 9F .The 0th percentile filter is the min filter, used for
the opposite purpose. Median, max, and mean filters are considered in more
detail in Chapter 5.

! Figure 3.37(a) shows an X-ray image of a circuit board heavily corrupted by
salt-and-pepper noise.To illustrate the point about the superiority of median fil-
tering over average filtering in situations such as this, we show in Fig. 3.37(b) the
result of processing the noisy image with a 3*3 neighborhood averaging mask,
and in Fig. 3.37(c) the result of using a 3*3 median filter.The image processed
with the averaging filter has less visible noise, but the price paid is significant
blurring. The superiority in all respects of median over average filtering in this
case is quite evident. In general, median filtering is much better suited than av-
eraging for the removal of additive salt-and-pepper noise. !

EXAMPLE 3.10:
Use of median
filtering for noise
reduction.

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3*3 averaging mask. (c) Noise reduction with a 3*3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, Inc.)

a b c
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(a) X-ray image with salt 
and pepper noise.

(b) Average Filter 3x3 (c) Median Filter 3x3



Effrosyni Doutsi | ADA-X

Min Filter

150

33 32 7 9 10 4

10 2 21 1 18 22

7 4 14 19 3 10

14 8 16 4 17 38

25 6 2 3 31 36

10 3 9 11 28 21

21 1 18 14 19 3 16 4 17

33 32 7 9 10 4

10 2 21 1 18 22

7 4 14 1 3 10

14 8 16 4 17 38

25 6 2 3 31 36

10 3 9 11 28 21



Effrosyni Doutsi | ADA-X

Max Filter

151

33 32 7 9 10 4

10 2 21 1 18 22

7 4 14 19 3 10

14 8 16 4 17 38

25 6 2 3 31 36

10 3 9 11 28 21

21 1 18 14 19 3 16 4 17

33 32 7 9 10 4

10 2 21 1 18 22

7 4 14 21 3 10

14 8 16 4 17 38

25 6 2 3 31 36

10 3 9 11 28 21



Sharpening Spatial Filters

ü The principal objective of sharpening is to highlight fine details in
an image or to enhance detail that has been blurred, The principal
objective of sharpening is to highlight fine detail in an image or to
enhance detail that has been blurred.

ü Sharpening could be accomplished by spatial differentiation

ü The strength of the response of a derivative operator is
proportional to the degree of discontinuity of the image at the point
at which the operator is applied.

ü Image differentiation enhances edges and other discontinuities
(such as noise) and deemphasizes areas with slowly varying gray-
level values.
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Sharpening Spatial Filters

ü A basic definition of the first-order derivative of a one-dimensional 
function 𝑓(𝑥) is the difference 

𝜕𝑓
𝜕𝑥

= 𝑓(𝑥 + 1) − 𝑓(𝑥).

ü Similarly, we define a second-order derivative as the difference 

𝜕𝑓
𝜕𝑥 = 𝑓(𝑥 + 1) + 𝑓(𝑥 − 1) − 2𝑓(𝑥).
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Example
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FIGURE 3.38
(a) A simple
image. (b) 1-D
horizontal gray-
level profile along
the center of the
image and
including the
isolated noise
point.
(c) Simplified
profile (the points
are joined by
dashed lines to
simplify
interpretation).

will be dealing with partial derivatives along the two spatial axes. Use of a par-
tial derivative in the present discussion does not affect in any way the nature of
what we are trying to accomplish.

Similarly, we define a second-order derivative as the difference

It is easily verified that these two definitions satisfy the conditions stated pre-
viously regarding derivatives of the first and second order.To see this, and also
to highlight the fundamental similarities and differences between first- and sec-
ond-order derivatives in the context of image processing, consider the example
shown in Fig. 3.38.

Figure 3.38(a) shows a simple image that contains various solid objects, a
line, and a single noise point. Figure 3.38(b) shows a horizontal gray-level pro-
file (scan line) of the image along the center and including the noise point.This
profile is the one-dimensional function we will use for illustrations regarding this
figure. Figure 3.38(c) shows a simplification of the profile, with just enough num-

02f
0x2 = f(x + 1) + f(x - 1) - 2f(x).

a b
c
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Second Derivatives for Enhancement

ü The approach basically consists of defining a discrete formulation of
the second-order derivative and then constructing a filter mask
based on that formulation.

ü We are interested in isotropic filters, whose response is
independent of the direction of the discontinuities in the image to
which the filter is applied.

ü Isotropic filters are rotation invariant, in the sense that rotating
the image and then applying the filter gives the same result as
applying the filter to the image first and then rotating the result.
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The Laplacian
ü the Laplacian is the simplest isotropic derivative operator, which, for a

function (image) 𝑓(𝑥, 𝑦) of two variables, is defined as

∇(𝑓 =
𝜕(𝑓
𝜕𝑥(

+
𝜕(𝑓
𝜕𝑦(

ü The partial second-order derivative in the x-direction and y-direction :

𝜕(𝑓
𝜕𝑥(

= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓 𝑥, 𝑦

𝜕(𝑓
𝜕𝑦(

= 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓(𝑥, 𝑦)

ü The digital implementation of the two-dimensional Laplacian is obtained by
summing these two components:

∇(𝑓 = [𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓 𝑥, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓(𝑥, 𝑦)]
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FIGURE 3.39
(a) Filter mask
used to
implement the
digital Laplacian,
as defined in
Eq. (3.7-4).
(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (c) and
(d) Two other
implementations
of the Laplacian.

or (3.7-3), but the coordinates are along the diagonals. Since each diagonal term
also contains a –2f(x, y) term, the total subtracted from the difference terms
now would be –8f(x, y). The mask used to implement this new definition is
shown in Fig. 3.39(b). This mask yields isotropic results for increments of 45°.
The other two masks shown in Fig. 3.39 also are used frequently in practice.
They are based on a definition of the Laplacian that is the negative of the one
we used here. As such, they yield equivalent results, but the difference in sign
must be kept in mind when combining (by addition or subtraction) a Lapla-
cian-filtered image with another image.

Because the Laplacian is a derivative operator, its use highlights gray-level
discontinuities in an image and deemphasizes regions with slowly varying gray
levels. This will tend to produce images that have grayish edge lines and other
discontinuities, all superimposed on a dark, featureless background. Background
features can be “recovered” while still preserving the sharpening effect of the
Laplacian operation simply by adding the original and Laplacian images. As
noted in the previous paragraph, it is important to keep in mind which defini-
tion of the Laplacian is used. If the definition used has a negative center coef-
ficient, then we subtract, rather than add, the Laplacian image to obtain a
sharpened result. Thus, the basic way in which we use the Laplacian for image
enhancement is as follows:

(3.7-5)

Use of this equation is illustrated next.

g(x, y) = df(x, y) - § 2f(x, y)

f(x, y) + § 2f(x, y)

if the center coefficient of the
Laplacian mask is negative

if the center coefficient of the
Laplacian mask is positive.

a b
c d
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Example
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FIGURE 3.40
(a) Image of the
North Pole of the
moon.
(b) Laplacian-
filtered image.
(c) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)

! Figure 3.40(a) shows an image of the North Pole of the moon. Figure 3.40(b)
shows the result of filtering this image with the Laplacian mask in Fig. 3.39(b).
Since the Laplacian image contains both positive and negative values, a typical
way to scale it is to use the approach discussed at the end of Section 3.4.1. Some-
times one encounters the absolute value being used for this purpose, but this re-
ally is not correct because it produces double lines of nearly equal magnitude,
which can be confusing.

The image shown in Fig. 3.40(c) was scaled in the manner just described for
display purposes. Note that the dominant features of the image are edges and
sharp gray-level discontinuities of various gray-level values. The background,
previously near black, is now gray due to the scaling. This grayish appearance
is typical of Laplacian images that have been scaled properly. Finally, Fig. 3.40(d)

EXAMPLE 3.11:
Imaging
sharpening with
the Laplacian.

a b
c d
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(a) Original NASA image (b) Laplacian Filtered 
Image 

(c) Laplacian scaled 
filtered image

(d) Image enhanced



Edge detection filters
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(a) Roberts rows (b) Prewitt rows (c) Sobel rows (d) Robinson rows
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Παράδειγµα εφαρµογής µασκών Sobel για 
ανίχνευση ακµών

Αρχική εικόνα Ι
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 1 1 1 1 0 0
4 0 0 1 1 1 1 0 0
5 0 0 1 1 1 1 0 0
6 0 0 1 1 1 1 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_row
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 4 4 3 1 0
3 0 1 3 4 4 3 1 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 -1 -3 -4 -4 -3 -1 0
7 0 -1 -3 -4 -4 -3 -1 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_column
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 0 0 -1 -1 0
3 0 1 3 0 0 -3 -3 0
4 0 4 4 0 0 -4 -4 0
5 0 4 4 0 0 -4 -4 0
6 0 -1 -3 0 0 -3 -1 0
7 0 -1 -3 0 0 -3 -1 0
8 0 0 0 0 0 0 0 0

Κ. ∆ελήµπασης

Sobel row
1 2 3

1 1 2 1
2 0 0 0
3 -1 -2 -1

Sobel column
1 2 3

1 1 0 -1
2 2 0 -2
3 1 0 -1

abs(Ι*Sobel_row)+abs(Ι*Sobel_column)
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 2 6 4 4 4 2 0
3 0 2 6 4 4 6 4 0
4 0 4 4 0 0 4 4 0
5 0 4 4 0 0 4 4 0
6 0 2 6 4 4 6 2 0
7 0 2 6 4 4 6 2 0
8 0 0 0 0 0 0 0 0

Convolution with Sobel rowSobel filter 
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Παράδειγµα εφαρµογής µασκών Sobel για 
ανίχνευση ακµών

Αρχική εικόνα Ι
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 1 1 1 1 0 0
4 0 0 1 1 1 1 0 0
5 0 0 1 1 1 1 0 0
6 0 0 1 1 1 1 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_row
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 4 4 3 1 0
3 0 1 3 4 4 3 1 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 -1 -3 -4 -4 -3 -1 0
7 0 -1 -3 -4 -4 -3 -1 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_column
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 0 0 -1 -1 0
3 0 1 3 0 0 -3 -3 0
4 0 4 4 0 0 -4 -4 0
5 0 4 4 0 0 -4 -4 0
6 0 -1 -3 0 0 -3 -1 0
7 0 -1 -3 0 0 -3 -1 0
8 0 0 0 0 0 0 0 0

Κ. ∆ελήµπασης

Sobel row
1 2 3

1 1 2 1
2 0 0 0
3 -1 -2 -1

Sobel column
1 2 3

1 1 0 -1
2 2 0 -2
3 1 0 -1

abs(Ι*Sobel_row)+abs(Ι*Sobel_column)
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 2 6 4 4 4 2 0
3 0 2 6 4 4 6 4 0
4 0 4 4 0 0 4 4 0
5 0 4 4 0 0 4 4 0
6 0 2 6 4 4 6 2 0
7 0 2 6 4 4 6 2 0
8 0 0 0 0 0 0 0 0

Initial Image

Παράδειγµα εφαρµογής µασκών Sobel για 
ανίχνευση ακµών

Αρχική εικόνα Ι
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 1 1 1 1 0 0
4 0 0 1 1 1 1 0 0
5 0 0 1 1 1 1 0 0
6 0 0 1 1 1 1 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_row
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 4 4 3 1 0
3 0 1 3 4 4 3 1 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 -1 -3 -4 -4 -3 -1 0
7 0 -1 -3 -4 -4 -3 -1 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_column
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 0 0 -1 -1 0
3 0 1 3 0 0 -3 -3 0
4 0 4 4 0 0 -4 -4 0
5 0 4 4 0 0 -4 -4 0
6 0 -1 -3 0 0 -3 -1 0
7 0 -1 -3 0 0 -3 -1 0
8 0 0 0 0 0 0 0 0

Κ. ∆ελήµπασης

Sobel row
1 2 3

1 1 2 1
2 0 0 0
3 -1 -2 -1

Sobel column
1 2 3

1 1 0 -1
2 2 0 -2
3 1 0 -1

abs(Ι*Sobel_row)+abs(Ι*Sobel_column)
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 2 6 4 4 4 2 0
3 0 2 6 4 4 6 4 0
4 0 4 4 0 0 4 4 0
5 0 4 4 0 0 4 4 0
6 0 2 6 4 4 6 2 0
7 0 2 6 4 4 6 2 0
8 0 0 0 0 0 0 0 0

Sobel row

Παράδειγµα εφαρµογής µασκών Sobel για 
ανίχνευση ακµών

Αρχική εικόνα Ι
1 2 3 4 5 6 7 8
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3 0 0 1 1 1 1 0 0
4 0 0 1 1 1 1 0 0
5 0 0 1 1 1 1 0 0
6 0 0 1 1 1 1 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_row
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 4 4 3 1 0
3 0 1 3 4 4 3 1 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 -1 -3 -4 -4 -3 -1 0
7 0 -1 -3 -4 -4 -3 -1 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_column
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 0 0 -1 -1 0
3 0 1 3 0 0 -3 -3 0
4 0 4 4 0 0 -4 -4 0
5 0 4 4 0 0 -4 -4 0
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8 0 0 0 0 0 0 0 0

Κ. ∆ελήµπασης

Sobel row
1 2 3

1 1 2 1
2 0 0 0
3 -1 -2 -1

Sobel column
1 2 3

1 1 0 -1
2 2 0 -2
3 1 0 -1

abs(Ι*Sobel_row)+abs(Ι*Sobel_column)
1 2 3 4 5 6 7 8
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2 0 2 6 4 4 4 2 0
3 0 2 6 4 4 6 4 0
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5 0 4 4 0 0 4 4 0
6 0 2 6 4 4 6 2 0
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Sobel column
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1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 4 4 3 1 0
3 0 1 3 4 4 3 1 0
4 0 0 0 0 0 0 0 0
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6 0 -1 -3 -4 -4 -3 -1 0
7 0 -1 -3 -4 -4 -3 -1 0
8 0 0 0 0 0 0 0 0
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Convolution with Sobel column
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4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 -1 -3 -4 -4 -3 -1 0
7 0 -1 -3 -4 -4 -3 -1 0
8 0 0 0 0 0 0 0 0

Συνέλιξη Ι*Sobel_column
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 1 3 0 0 -1 -1 0
3 0 1 3 0 0 -3 -3 0
4 0 4 4 0 0 -4 -4 0
5 0 4 4 0 0 -4 -4 0
6 0 -1 -3 0 0 -3 -1 0
7 0 -1 -3 0 0 -3 -1 0
8 0 0 0 0 0 0 0 0

Κ. ∆ελήµπασης

Sobel row
1 2 3

1 1 2 1
2 0 0 0
3 -1 -2 -1

Sobel column
1 2 3

1 1 0 -1
2 2 0 -2
3 1 0 -1

abs(Ι*Sobel_row)+abs(Ι*Sobel_column)
1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 2 6 4 4 4 2 0
3 0 2 6 4 4 6 4 0
4 0 4 4 0 0 4 4 0
5 0 4 4 0 0 4 4 0
6 0 2 6 4 4 6 2 0
7 0 2 6 4 4 6 2 0
8 0 0 0 0 0 0 0 0

𝑎𝑏𝑠(𝑆𝑟 ∗ 𝑓) + 𝑎𝑏𝑠(𝑆𝑐 ∗ 𝑓)



Original Sobel Canny LoG Thresholded 
DoG

XDoG WDoG 
t = 26ms

WDoG 
t = 31ms

WDoG 
t = 36ms

WDoG 
t = 41ms

Applications: Feature Extraction
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ü The Fourier Transform of a continuous function 𝑓 𝑡 of a continuous
variable 𝑡 denoted as ℑ 𝑓 𝑡 is defined by

ℑ 𝑓 𝑡 = c
&4

54
𝑓 𝑡 𝑒&*89 𝑑𝑡 = c

&4

54
𝑓 𝑡 𝑒&*(:;9 𝑑𝑡 ,

where 𝜃 = 2𝜋𝜇 is the angle and 𝜇 is the frequency.

ü The Fourier Transform is a function of frequency  ℑ 𝑓 𝑡 = 𝐹(𝜇)

ü Using the Euler’s formula the Fourier Transform can be also written as 

𝐹(𝜇) = c
&4

54
𝑓 𝑡 [cos 2𝜋𝜇𝑡 − 𝑗 sin(2𝜋𝜇𝑡)] 𝑑𝑡
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ü The Inverse Fourier Transform of a continuous function 𝑓 𝑡 of a 
continuous variable 𝑡 denoted is defined as

𝑓 𝑡 = ℑ&' 𝐹(𝜇) = c
&4

54
𝐹(𝜇)𝑒*89 𝑑𝜇 = c

&4

54
𝐹(𝜇)𝑒*(:;9 𝑑𝜇 ,

where 𝜃 = 2𝜋𝜇 is the angle and 𝜇 is the frequency.

ü The Fourier Transform and the inverse Fourier Transform are so-
called Fourier transform pair.

ü We also call the Fourier Domain as Frequency Domain because the 
only variable left after the integration is frequency. 
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ü The convolution in space domain between two continuous function 𝑓(𝑡)
and ℎ(𝑡) of one continuous variable 𝑡 is analogous to multiplication in
frequency domain of the Fourier Transform of these functions

𝑓 𝑡 ∗ ℎ 𝑡 ⇔ 𝐹 𝜇 Η(µ)

ü In addition the convolution in frequency domain equals the
multiplication in the spatial domain

𝐹 𝜇 ∗ Η(µ) ⇔ 𝑓 𝑡 ℎ 𝑡

NOTE! The double arrow is used to indicate the the expression on the right is obtained by
taking the Fourier Transform of the expression on the left, while the expression on the
left is obtained by taking the inverse Fourier transform of the expression on the right.
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Ø Smoothing (blurring) is achieved in the frequency domain by
high-frequency attenuation; by low pass filtering

Ø The Ideal filter is a very sharp filtering

Ø The Gaussian filter is a very smooth filtering

Ø And the Butterworth filtering has a parameter called the
filter order. It approaches the ideal filter for high order
values and the Gaussian filter for low order values.
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v

u

H(u, v)

D(u, v)
D0

1

u v

H(u, v)

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.

without attenuation, whereas all frequencies outside the circle are completely
attenuated (filtered out). The ideal lowpass filter is radially symmetric about
the origin, which means that the filter is completely defined by a radial cross
section, as Fig. 4.40(c) shows. Rotating the cross section by 360° yields the fil-
ter in 2-D.

For an ILPF cross section, the point of transition between and
is called the cutoff frequency. In the case of Fig. 4.40, for example,

the cutoff frequency is The sharp cutoff frequencies of an ILPF cannot be
realized with electronic components, although they certainly can be simulated
in a computer. The effects of using these “nonphysical” filters on a digital
image are discussed later in this section.

The lowpass filters introduced in this chapter are compared by studying
their behavior as a function of the same cutoff frequencies. One way to estab-
lish a set of standard cutoff frequency loci is to compute circles that enclose
specified amounts of total image power This quantity is obtained by sum-
ming the components of the power spectrum of the padded images at each
point (u, v), for and that is,

(4.8-3)

where P(u, v) is given in Eq. (4.6-18). If the DFT has been centered, a circle of
radius with origin at the center of the frequency rectangle encloses per-
cent of the power, where

(4.8-4)

and the summation is taken over values of (u, v) that lie inside the circle or on
its boundary.

a = 100 ca
u
a
v

P(u, v)>PT d
aD0

PT = a
P - 1

u = 0
a

Q - 1

v = 0
P(u, v)

v = 0, 1, Á , Q - 1;u = 0, 1, Á , P - 1

PT.

D0.
H(u, v) = 0

H(u, v) = 1

a b c Ideal Lowpass Filter Ideal Lowpass Filter 
illustrated as an image

Filter radial cross section.
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Ø A 2D lowpass filter that passes without attenuation all
frequencies within a circle of radius 𝐷b from the origin and “cuts
off” all frequencies outside this circle is called an ideal lowpass
filter (ILPF)

𝐻 𝑢, 𝑣 = 1
1 if 𝐷(𝑢, 𝑣) ≤ 𝐷b
0 if 𝐷(𝑢, 𝑣) > 𝐷b

where 𝐷b is a positive constant and 𝐷(𝑢, 𝑣) is the distance
between a point (𝑢, 𝑣) in the frequency domain and the center
of the frequency rectangle

𝐷 𝑢, 𝑣 = (𝑢 − 𝑃/2)c + (𝑣 − 𝑄/2)c d/c
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FIGURE 4.42 (a) Original image. (b)–(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13, 6.9, 4.3, 2.2, and 0.8% of the total, respectively.
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FIGURE 4.42 (a) Original image. (b)–(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13, 6.9, 4.3, 2.2, and 0.8% of the total, respectively.

a b
c d
e f

Original Image Cut-off frequency 10 Cut-off frequency 30

Cut-off frequency 60 Cut-off frequency 160 Cut-off frequency 460
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0.5

D0

n ! 1
n ! 2

n ! 3
n ! 4

1.0v

u

H(u, v)

D(u, v)

u
v

H(u, v)

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.

Unlike the ILPF, the BLPF transfer function does not have a sharp discon-
tinuity that gives a clear cutoff between passed and filtered frequencies. For
filters with smooth transfer functions, defining a cutoff frequency locus at
points for which (u, v) is down to a certain fraction of its maximum value is
customary. In Eq. (4.8-5), (down 50% from its maximum value of 1) when
D(u, v) = D0.

H

EXAMPLE 4.17:
Image smoothing
with a
Butterworth
lowpass filter.

! Figure 4.45 shows the results of applying the BLPF of Eq. (4.8-5) to 
Fig. 4.45(a), with and equal to the five radii in Fig. 4.41(b). Unlike the
results in Fig. 4.42 for the ILPF, we note here a smooth transition in blurring as
a function of increasing cutoff frequency. Moreover, no ringing is visible in any
of the images processed with this particular BLPF, a fact attributed to the fil-
ter’s smooth transition between low and high frequencies. !

A BLPF of order 1 has no ringing in the spatial domain. Ringing generally
is imperceptible in filters of order 2, but can become significant in filters of
higher order. Figure 4.46 shows a comparison between the spatial representa-
tion of BLPFs of various orders (using a cutoff frequency of 5 in all cases).
Shown also is the intensity profile along a horizontal scan line through the cen-
ter of each filter.These filters were obtained and displayed using the same pro-
cedure used to generate Fig. 4.43. To facilitate comparisons, additional
enhancing with a gamma transformation [see Eq. (3.2-3)] was applied to the
images of Fig. 4.46. The BLPF of order 1 [Fig. 4.46(a)] has neither ringing nor
negative values.The filter of order 2 does show mild ringing and small negative
values, but they certainly are less pronounced than in the ILPF.As the remain-
ing images show, ringing in the BLPF becomes significant for higher-order fil-
ters.A Butterworth filter of order 20 exhibits characteristics similar to those of
the ILPF (in the limit, both filters are identical). BLPFs of order 2 are a good
compromise between effective lowpass filtering and acceptable ringing.

D0n = 2

a b c Butterworth Lowpass Filter Butterworth Lowpass Filter 
illustrated as an image

Filter radial cross section.
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Ø A transfer function of a Butterworth lowpass filter
(BLPF) of order 𝑛 and with cutoff frequency at a
distance 𝐷b from the origin is defined as

𝐻 𝑢, 𝑣 =
1

1 + ?𝐷 𝑢, 𝑣
𝐷b

cf

where 𝐷(𝑢, 𝑣) is given by

𝐷 𝑢, 𝑣 = (𝑢 − 𝑃/2)c + (𝑣 − 𝑄/2)c d/c
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FIGURE 4.42 (a) Original image. (b)–(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13, 6.9, 4.3, 2.2, and 0.8% of the total, respectively.

a b
c d
e f

Original Image Cut-off frequency 10 Cut-off frequency 30

Cut-off frequency 60 Cut-off frequency 160 Cut-off frequency 460

4.8 ! Image Smoothing Using Frequency Domain Filters 275

FIGURE 4.45 (a) Original image. (b)–(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig. 4.42.
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FIGURE 4.45 (a) Original image. (b)–(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig. 4.42.
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FIGURE 4.45 (a) Original image. (b)–(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig. 4.42.
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with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig. 4.42.
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FIGURE 4.45 (a) Original image. (b)–(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig. 4.42.
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4.8 ! Image Smoothing Using Frequency Domain Filters 277

EXAMPLE 4.18:
Image smoothing
with a Gaussian
lowpass filter.

1.0

0.667
D0 ! 10

D0 ! 20
D0 ! 40

D0 ! 100

v

u

H(u, v)

D(u, v)

u v

H(u, v)

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D0.

! Figure 4.48 shows the results of applying the GLPF of Eq. (4.8-7) to 
Fig. 4.48(a), with equal to the five radii in Fig. 4.41(b). As in the case of the
BLPF of order 2 (Fig. 4.45), we note a smooth transition in blurring as a func-
tion of increasing cutoff frequency.The GLPF achieved slightly less smoothing
than the BLPF of order 2 for the same value of cutoff frequency, as can be
seen, for example, by comparing Figs. 4.45(c) and 4.48(c). This is expected, be-
cause the profile of the GLPF is not as “tight” as the profile of the BLPF of
order 2. However, the results are quite comparable, and we are assured of no
ringing in the case of the GLPF. This is an important characteristic in practice,
especially in situations (e.g., medical imaging) in which any type of artifact is
unacceptable. In cases where tight control of the transition between low and
high frequencies about the cutoff frequency are needed, then the BLPF pre-
sents a more suitable choice. The price of this additional control over the filter
profile is the possibility of ringing. !

4.8.4 Additional Examples of Lowpass Filtering
In the following discussion, we show several practical applications of lowpass
filtering in the frequency domain. The first example is from the field of ma-
chine perception with application to character recognition; the second is from
the printing and publishing industry; and the third is related to processing

D0

a b c

Ideal Butterworth Gaussian

H(u, v) = e-D2(u,v)>2D0
2

H(u, v) = 1
1 + [D(u, v)>D0] 2nH(u, v) = b1 if D(u, v) … D0

0 if D(u, v) 7 D0

TABLE 4.4
Lowpass filters. is the cutoff frequency and n is the order of the Butterworth filter.D0

Gaussian Lowpass Filter Gaussian Lowpass Filter 
illustrated as an image

Filter radial cross section.
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Ø A transfer function of a Gaussian lowpass filter
(GLPF) in two dimensions is given by

𝐻 𝑢, 𝑣 = 𝑒gh!(i,j)/ch"!

where 𝐷b is the cutoff frequency. When 𝐷(𝑢, 𝑣) = 𝐷b the
GLPF is down to 0.607 of its maximum value.
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FIGURE 4.42 (a) Original image. (b)–(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13, 6.9, 4.3, 2.2, and 0.8% of the total, respectively.

a b
c d
e f

Original Image Cut-off frequency 10 Cut-off frequency 30

Cut-off frequency 60 Cut-off frequency 160 Cut-off frequency 460
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FIGURE 4.48 (a) Original image. (b)–(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs. 4.42 and 4.45.
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FIGURE 4.48 (a) Original image. (b)–(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs. 4.42 and 4.45.
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FIGURE 4.48 (a) Original image. (b)–(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs. 4.42 and 4.45.
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FIGURE 4.48 (a) Original image. (b)–(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs. 4.42 and 4.45.
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FIGURE 4.48 (a) Original image. (b)–(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs. 4.42 and 4.45.

a b
c d
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Ideal Highpass Filter Ideal Highpass Filter 
illustrated as an image

Filter radial cross section.
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

where is the cutoff frequency and D is given by Eq. (4.8-2). This ex-
pression follows directly from Eqs. (4.8-1) and (4.9-1). As intended, the IHPF
is the opposite of the ILPF in the sense that it sets to zero all frequencies inside
a circle of radius while passing, without attenuation, all frequencies outside
the circle.As in the case of the ILPF, the IHPF is not physically realizable. How-
ever, we consider it here for completeness and, as before, because its proper-
ties can be used to explain phenomena such as ringing in the spatial domain.
The discussion will be brief.

Because of the way in which they are related [Eq. (4.9-1)], we can expect
IHPFs to have the same ringing properties as ILPFs. This is demonstrated

D0

(u, v)D0

a b c
d e f
g h i
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Ø A 2D highpass filter that passes without attenuation all
frequencies outside a circle of radius 𝐷b from the origin
and “cuts off” all frequencies inside this circle is called an
ideal highpass filter (IHPF)

𝐻 𝑢, 𝑣 = 1
0 if 𝐷(𝑢, 𝑣) ≤ 𝐷b
1 if 𝐷(𝑢, 𝑣) > 𝐷b

where 𝐷b is a positive constant and 𝐷(𝑢, 𝑣) is the distance
between a point (𝑢, 𝑣) in the frequency domain and the
center of the frequency rectangle

𝐷 𝑢, 𝑣 = (𝑢 − 𝑃/2)c + (𝑣 − 𝑄/2)c d/c
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Ideal Highpass Filter with 
𝐷& = 30

4.9 ! Image Sharpening Using Frequency Domain Filters 283

~ ~ ~

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with 60, and 160.D0 = 30,

clearly in Fig. 4.54, which consists of various IHPF results using the original
image in Fig. 4.41(a) with set to 30, 60, and 160 pixels, respectively. The ring-
ing in Fig. 4.54(a) is so severe that it produced distorted, thickened object
boundaries (e.g., look at the large letter “a”). Edges of the top three circles do
not show well because they are not as strong as the other edges in the image
(the intensity of these three objects is much closer to the background intensity,

D0

a b c

a b c Ideal Highpass Filter with 
𝐷& = 60

Ideal Highpass Filter with 
𝐷& = 160
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Butterworth highpass 
Filter

Butterworth highpass 
Filter illustrated as an 

image

Filter radial cross section.
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

where is the cutoff frequency and D is given by Eq. (4.8-2). This ex-
pression follows directly from Eqs. (4.8-1) and (4.9-1). As intended, the IHPF
is the opposite of the ILPF in the sense that it sets to zero all frequencies inside
a circle of radius while passing, without attenuation, all frequencies outside
the circle.As in the case of the ILPF, the IHPF is not physically realizable. How-
ever, we consider it here for completeness and, as before, because its proper-
ties can be used to explain phenomena such as ringing in the spatial domain.
The discussion will be brief.

Because of the way in which they are related [Eq. (4.9-1)], we can expect
IHPFs to have the same ringing properties as ILPFs. This is demonstrated

D0

(u, v)D0

a b c
d e f
g h i
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Ø A transfer function of a Butterworth highpass filter
(BHPF) of order 𝑛 and with cutoff frequency at a distance
𝐷b from the origin is defined as

𝐻 𝑢, 𝑣 =
1

1 + ?𝐷b
𝐷 𝑢, 𝑣

cf

where 𝐷(𝑢, 𝑣) is given by

𝐷 𝑢, 𝑣 = (𝑢 − 𝑃/2)c + (𝑣 − 𝑄/2)c d/c
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Butterworth Highpass 
Filter with 𝐷& = 30

Butterworth Highpass 
Filter with 𝐷& = 60

Butterworth Highpass 
Filter with 𝐷& = 160
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giving discontinuities of smaller magnitude). Looking at the “spot” size of the
spatial representation of the IHPF in Fig. 4.53(a) and keeping in mind that fil-
tering in the spatial domain is convolution of the spatial filter with the image
helps explain why the smaller objects and lines appear almost solid white.
Look in particular at the three small squares in the top row and the thin, ver-
tical bars in Fig. 4.54(a). The situation improved somewhat with 
Edge distortion is quite evident still, but now we begin to see filtering on the
smaller objects. Due to the now familiar inverse relationship between the fre-
quency and spatial domains, we know that the spot size of this filter is smaller
than the spot of the filter with The result for is closer to
what a highpass-filtered image should look like. Here, the edges are much
cleaner and less distorted, and the smaller objects have been filtered prop-
erly. Of course, the constant background in all images is zero in these
highpass-filtered images because highpass filtering is analogous to differ-
entiation in the spatial domain.

4.9.2 Butterworth Highpass Filters
A 2-D Butterworth highpass filter (BHPF) of order n and cutoff frequency 
is defined as

(4.9-3)

where D is given by Eq. (4.8-2). This expression follows directly from
Eqs. (4.8-5) and (4.9-1). The middle row of Fig. 4.52 shows an image and cross
section of the BHPF function.

As with lowpass filters, we can expect Butterworth highpass filters to be-
have smoother than IHPFs. Figure 4.55 shows the performance of a BHPF, of

(u, v)

H(u, v) = 1
1 + [D0>D(u, v)]2n

D0

D0 = 160D0 = 30.

D0 = 60.

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an IHPF.

D0 = 30,

a b c
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Gaussian Highpass Filter Gaussian Highpass Filter 
illustrated as an image

Filter radial cross section.
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

where is the cutoff frequency and D is given by Eq. (4.8-2). This ex-
pression follows directly from Eqs. (4.8-1) and (4.9-1). As intended, the IHPF
is the opposite of the ILPF in the sense that it sets to zero all frequencies inside
a circle of radius while passing, without attenuation, all frequencies outside
the circle.As in the case of the ILPF, the IHPF is not physically realizable. How-
ever, we consider it here for completeness and, as before, because its proper-
ties can be used to explain phenomena such as ringing in the spatial domain.
The discussion will be brief.

Because of the way in which they are related [Eq. (4.9-1)], we can expect
IHPFs to have the same ringing properties as ILPFs. This is demonstrated

D0

(u, v)D0

a b c
d e f
g h i



Effrosyni Doutsi | ADA-X

Example

193

Gaussian Highpass Filter 
with 𝐷& = 30

Gaussian Highpass Filter 
with 𝐷& = 60

Gaussian Highpass Filter 
with 𝐷& = 160

4.9 ! Image Sharpening Using Frequency Domain Filters 285

order 2 and with set to the same values as in Fig. 4.54. The boundaries are
much less distorted than in Fig. 4.54, even for the smallest value of cutoff fre-
quency. Because the spot sizes in the center areas of the IHPF and the BHPF
are similar [see Figs. 4.53(a) and (b)], the performance of the two filters on the
smaller objects is comparable. The transition into higher values of cutoff fre-
quencies is much smoother with the BHPF.

4.9.3 Gaussian Highpass Filters
The transfer function of the Gaussian highpass filter (GHPF) with cutoff fre-
quency locus at a distance from the center of the frequency rectangle is
given by

(4.9-4)

where D is given by Eq. (4.8-2). This expression follows directly from
Eqs. (4.8-7) and (4.9-1). The third row in Fig. 4.52 shows a perspective plot,
image, and cross section of the GHPF function. Following the same format as
for the BHPF, we show in Fig. 4.56 comparable results using GHPFs. As ex-
pected, the results obtained are more gradual than with the previous two fil-
ters. Even the filtering of the smaller objects and thin bars is cleaner with the
Gaussian filter. Table 4.5 contains a summary of the highpass filters discussed
in this section.

(u, v)

H(u, v) = 1 - e-D2(u,v)>2D0
2

D0

D0

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

D0 = 30, 60,

a b c

Ideal Butterworth Gaussian

H(u, v) = 1 - e-D2(u,v)>2D0
2

H(u, v) = 1
1 + [D0>D(u, v)]2nH(u, v) = b1 if D(u, v) … D0

0 if D(u, v) 7 D0

TABLE 4.5
Highpass filters. is the cutoff frequency and n is the order of the Butterworth filter.D0
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Ø A transfer function of a Gaussian highpass filter (GHPF)
in two dimensions is given by

𝐻 𝑢, 𝑣 = 1 − 𝑒gh!(i,j)/ch"!

where 𝐷b is the cutoff frequency.
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ü The work morphology commonly denotes a branch of biology
that deals with the form and structure of animals and plants.

ü Mathematical Morphology is a tool that enables the extraction
of image components that are useful in the representation and
description of region shapes such as boundaries, skeletons and
convex hull.

ü Morphological techniques might be pre- or post-processing i.e.
filtering, thinning and pruning.

ü The input of a morphological method is an image and the output
might be either an image or some useful attributes extracted
from the input images.
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ü A set is a collection of objects, which are the elements of the set.

ü If 𝑆 is a set and 𝑥 is an element of 𝑆, we write 𝑥 ∈ S.

ü If 𝑥 is not an element of 𝑆, we write 𝑥 ∉ S.

ü A set can have no elements, in which case it is called the empty
set, denoted be ∅.

ü If 𝑆 contains a finite number of elements, say 𝑥', 𝑥(, … , 𝑥$, we write
it as a list of the elements, in braces:

𝑆 = 𝑥', 𝑥(, … , 𝑥$
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ü If 𝑆 contains infinitely many elements 𝑥', 𝑥(, … , which can be
enumerated in a list, we say that 𝑆 countably infinite and we
write

𝑆 = 𝑥', 𝑥(, …

ü Alternatively, we an consider the set of all 𝑥 that have a certain
property 𝑃 and denote it by

𝑥|𝑥 satisfies 𝑃

ü A set of all scalars 𝑥 in the interval [0,1] can be written as {x|0 ≤
𝑥 ≤ 1}. The elements of this set cannot be written down in a list;
such a set is said to be uncountable.
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ü The complement of a set 𝑆 with respect to the universe Ω, is the set of all
elements of Ω that do not belong to 𝑆 and is denoted as 𝑆<.

𝑥 ∈ Ω| 𝑥 ∉ 𝑆
ü The union of two sets 𝑆 and 𝑇 is the set of all elements that belong to 𝑆 or 

𝑇 (or both), and is denoted by 𝑆 ∪ 𝑇.

𝑆 ∪ 𝑇 𝑥 ∈ S or 𝑥 ∈ 𝑇
ü The intersection of two sets 𝑆 and 𝑇 is the set of all elements that belong 

to both 𝑆 and 𝑇, and it is denoted by S ∩ T.

𝑆 ∩ 𝑇 𝑥 ∈ S and 𝑥 ∈ 𝑇
ü Two sets are said to be disjoint if their intersection is empty. In other 

words, two sets are called disjoint if no two of them have a common 
element.
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Sec. 1.1 Sets 5

If x and y are two objects, we use (x, y) to denote the ordered pair of x
and y. The set of scalars (real numbers) is denoted by !; the set of pairs (or
triplets) of scalars, i.e., the two-dimensional plane (or three-dimensional space,
respectively) is denoted by !2 (or !3, respectively).

Sets and the associated operations are easy to visualize in terms of Venn
diagrams, as illustrated in Fig. 1.1.
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Figure 1.1: Examples of Venn diagrams. (a) The shaded region is S ∩ T . (b)
The shaded region is S ∪ T . (c) The shaded region is S ∩ T c. (d) Here, T ⊂ S.
The shaded region is the complement of S. (e) The sets S, T , and U are disjoint.
(f) The sets S, T , and U form a partition of the set Ω.

The Algebra of Sets

Set operations have several properties, which are elementary consequences of the
definitions. Some examples are:

S ∪ T = T ∪ S, S ∪ (T ∪ U) = (S ∪ T ) ∪ U,
S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U), S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U),

(Sc)c = S, S ∩ Sc = Ø,
S ∪ Ω = Ω, S ∩ Ω = S.

Two particularly useful properties are given by de Morgan’s laws which
state that (
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Sn
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=
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To establish the first law, suppose that x ∈ (∪nSn)c. Then, x /∈ ∪nSn, which
implies that for every n, we have x /∈ Sn. Thus, x belongs to the complement
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ü Reflection of a set 𝐵, denoted as
B𝐵, is defined as

B𝐵 = 𝑤 𝑤 = −𝑏, for 𝑏 ∈ 𝐵 .

If 𝐵 is the set of pixels (2D
points) representing an object in
an image, then B𝐵 is simply the
set of points in 𝐵 whose (𝑥, 𝑦)
coordinates have been replaced
by (−𝑥,−𝑦).

628 Chapter 9 ! Morphological Image Processing

†When working with graphics, such as the sets in Fig. 9.1, we use shading to indicate points (pixels) that
are members of the set under consideration. When working with binary images, the sets of interest are
pixels corresponding to objects. We show these in white, and all other pixels in black. The terms
foreground and background are used often to denote the sets of pixels in an image defined to be objects
and non-objects, respectively.

You will find it helpful to
review Sections 2.4.2 and
2.6.4 before proceeding.

9.1 Preliminaries
The language of mathematical morphology is set theory. As such, morpholo-
gy offers a unified and powerful approach to numerous image processing
problems. Sets in mathematical morphology represent objects in an image.
For example, the set of all white pixels in a binary image is a complete mor-
phological description of the image. In binary images, the sets in question are
members of the 2-D integer space (see Section 2.4.2), where each element
of a set is a tuple (2-D vector) whose coordinates are the coordinates
of a white (or black, depending on convention) pixel in the image. Gray-
scale digital images of the form discussed in the previous chapters can be
represented as sets whose components are in In this case, two compo-
nents of each element of the set refer to the coordinates of a pixel, and the
third corresponds to its discrete intensity value. Sets in higher dimensional
spaces can contain other image attributes, such as color and time varying
components.

In addition to the basic set definitions in Section 2.6.4, the concepts of set
reflection and translation are used extensively in morphology.The reflection of
a set denoted is defined as

(9.1-1)

If is the set of pixels (2-D points) representing an object in an image, then is
simply the set of points in whose coordinates have been replaced by

Figures 9.1(a) and (b) show a simple set and its reflection.†(-x, -y).
(x, y)B

BNB

BN = 5w ƒ w = -b, for b H B6BN ,B,

Z3.

(x, y)
Z2

The set reflection opera-
tion is analogous to the
flipping (rotating) opera-
tion performed in spatial
convolution (Section
3.4.2).

B

(B)z

z1

z2B̂

FIGURE 9.1
(a) A set, (b) its
reflection, and 
(c) its translation
by z.

a b c
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ü Translation of a set 𝐵, denoted
as (𝐵)s, is defined as

(𝐵)s= 𝑤 𝑤 = 𝑏 + 𝑧, for 𝑏 ∈ 𝐵 .

ü If 𝐵 is the set of pixels (2D
points) representing an object in
an image, then (𝐵)s is simply the
set of points in 𝐵 whose (𝑥, 𝑦)
coordinates have been replaced
by (𝑥 + 𝑧d, 𝑦 + 𝑧c).
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represented as sets whose components are in In this case, two compo-
nents of each element of the set refer to the coordinates of a pixel, and the
third corresponds to its discrete intensity value. Sets in higher dimensional
spaces can contain other image attributes, such as color and time varying
components.

In addition to the basic set definitions in Section 2.6.4, the concepts of set
reflection and translation are used extensively in morphology.The reflection of
a set denoted is defined as

(9.1-1)

If is the set of pixels (2-D points) representing an object in an image, then is
simply the set of points in whose coordinates have been replaced by

Figures 9.1(a) and (b) show a simple set and its reflection.†(-x, -y).
(x, y)B

BNB

BN = 5w ƒ w = -b, for b H B6BN ,B,

Z3.

(x, y)
Z2

The set reflection opera-
tion is analogous to the
flipping (rotating) opera-
tion performed in spatial
convolution (Section
3.4.2).
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FIGURE 9.1
(a) A set, (b) its
reflection, and 
(c) its translation
by z.
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ü Set reflection and translation are
employed extensively in morphology to
formulate operations based on
structural elements (SEs).

ü Structuring Elements are small sets or
sub-images used to probe an image
under study for properties of interest.

ü Structural Elements might have several
different shapes, such as square, line,
diamond, ball, disk, ect.

ü The origin of a structuring element also
must be specified (black dot).

9.1 ! Preliminaries 629

The translation of a set by point denoted is defined as

(9.1-2)

If is the set of pixels representing an object in an image, then is the
set of points in whose coordinates have been replaced by

Figure 9.1(c) illustrates this concept using the set from
Fig. 9.1(a).

Set reflection and translation are employed extensively in morphology to
formulate operations based on so-called structuring elements (SEs): small
sets or subimages used to probe an image under study for properties of in-
terest. The first row of Fig. 9.2 shows several examples of structuring ele-
ments where each shaded square denotes a member of the SE. When it does
not matter whether a location in a given structuring element is or is not a
member of the SE set, that location is marked with an to denote a “don’t
care” condition, as defined later in Section 9.5.4. In addition to a definition
of which elements are members of the SE, the origin of a structuring element
also must be specified. The origins of the various SEs in Fig. 9.2 are indicated
by a black dot (although placing the center of an SE at its center of gravity is
common, the choice of origin is problem dependent in general). When the
SE is symmetric and no dot is shown, the assumption is that the origin is at
the center of symmetry.

When working with images, we require that structuring elements be rec-
tangular arrays. This is accomplished by appending the smallest possible
number of background elements (shown nonshaded in Fig. 9.2) necessary to
form a rectangular array. The first and last SEs in the second row of Fig. 9.2
illustrate the procedure. The other SEs in that row already are in rectangu-
lar form.

As an introduction to how structuring elements are used in morphology,
consider Fig. 9.3. Figures 9.3(a) and (b) show a simple set and a structuring el-
ement. As mentioned in the previous paragraph, a computer implementation
requires that set be converted also to a rectangular array by adding back-
ground elements. The background border is made large enough to accommo-
date the entire structuring element when its origin is on the border of the

A

“*”

B(x + z1, y + z2).
(x, y)B

(B)zB

(B)z = 5c ƒ c = b + z, for b H B6 (B)z,z = (z1, z2),B

FIGURE 9.2 First
row: Examples of
structuring
elements. Second
row: Structuring
elements
converted to
rectangular
arrays. The dots
denote the centers
of the SEs.

Examples of structuring elements.
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ü In image processing it is
required that structuring
elements be rectangular
arrays.

ü This is accomplished by
appending the smallest
possible number of
background.

Structuring elements converted to 
rectangular arrays.
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ü Suppose that we are interested
in creating a new set by running
a set 𝐵 over a set 𝐴 so that the
origin of 𝐵 visits every element
of 𝐴.

ü At each location of the origin of
𝐵, if 𝐵 is completely in 𝐴 then
the pixel is shaded otherwise it
is not shaded.

ü The result is that the boundary
of the initial set is eroded.
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A

B

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.

original set (this is analogous to padding for spatial correlation and convolu-
tion, as discussed in Section 3.4.2). In this case, the structuring element is of
size with the origin in the center, so a one-element border that encom-
passes the entire set is sufficient, as Fig. 9.3(c) shows. As in Fig. 9.2, the struc-
turing element is filled with the smallest possible number of background
elements necessary to make it into a rectangular array [Fig. 9.3(d)].

Suppose that we define an operation on set using structuring element 
as follows: Create a new set by running over so that the origin of visits
every element of At each location of the origin of if is completely con-
tained in mark that location as a member of the new set (shown shaded);
else mark it as not being a member of the new set (shown not shaded).
Figure 9.3(e) shows the result of this operation.We see that, when the origin of

is on a border element of part of ceases to be contained in thus elim-
inating the location on which is centered as a possible member for the new
set.The net result is that the boundary of the set is eroded, as Fig. 9.3(e) shows.
When we use terminology such as “the structuring element is contained in the
set,” we mean specifically that the elements of and fully overlap. In other
words, although we showed and as arrays containing both shaded and
nonshaded elements, only the shaded elements of both sets are considered in
determining whether or not is contained in These concepts form the basis
of the material in the next section, so it is important that you understand the
ideas in Fig. 9.3 fully before proceeding.

9.2 Erosion and Dilation
We begin the discussion of morphology by studying two operations: erosion
and dilation. These operations are fundamental to morphological processing.
In fact, many of the morphological algorithms discussed in this chapter are
based on these two primitive operations.

A.B

BA
BA

B
A,BA,B

A,
BB,A.

BAB
B,A

3 * 3

In future illustrations, we
add enough background
points to form rectangular
arrays, but let the padding
be implicit when the
meaning is clear in order
to simplify the figures.

a b
c d e

630 Chapter 9 ! Morphological Image Processing

A

B

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.

original set (this is analogous to padding for spatial correlation and convolu-
tion, as discussed in Section 3.4.2). In this case, the structuring element is of
size with the origin in the center, so a one-element border that encom-
passes the entire set is sufficient, as Fig. 9.3(c) shows. As in Fig. 9.2, the struc-
turing element is filled with the smallest possible number of background
elements necessary to make it into a rectangular array [Fig. 9.3(d)].

Suppose that we define an operation on set using structuring element 
as follows: Create a new set by running over so that the origin of visits
every element of At each location of the origin of if is completely con-
tained in mark that location as a member of the new set (shown shaded);
else mark it as not being a member of the new set (shown not shaded).
Figure 9.3(e) shows the result of this operation.We see that, when the origin of

is on a border element of part of ceases to be contained in thus elim-
inating the location on which is centered as a possible member for the new
set.The net result is that the boundary of the set is eroded, as Fig. 9.3(e) shows.
When we use terminology such as “the structuring element is contained in the
set,” we mean specifically that the elements of and fully overlap. In other
words, although we showed and as arrays containing both shaded and
nonshaded elements, only the shaded elements of both sets are considered in
determining whether or not is contained in These concepts form the basis
of the material in the next section, so it is important that you understand the
ideas in Fig. 9.3 fully before proceeding.

9.2 Erosion and Dilation
We begin the discussion of morphology by studying two operations: erosion
and dilation. These operations are fundamental to morphological processing.
In fact, many of the morphological algorithms discussed in this chapter are
based on these two primitive operations.

A.B

BA
BA

B
A,BA,B

A,
BB,A.

BAB
B,A

3 * 3

In future illustrations, we
add enough background
points to form rectangular
arrays, but let the padding
be implicit when the
meaning is clear in order
to simplify the figures.

a b
c d e

630 Chapter 9 ! Morphological Image Processing

A

B

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.

original set (this is analogous to padding for spatial correlation and convolu-
tion, as discussed in Section 3.4.2). In this case, the structuring element is of
size with the origin in the center, so a one-element border that encom-
passes the entire set is sufficient, as Fig. 9.3(c) shows. As in Fig. 9.2, the struc-
turing element is filled with the smallest possible number of background
elements necessary to make it into a rectangular array [Fig. 9.3(d)].

Suppose that we define an operation on set using structuring element 
as follows: Create a new set by running over so that the origin of visits
every element of At each location of the origin of if is completely con-
tained in mark that location as a member of the new set (shown shaded);
else mark it as not being a member of the new set (shown not shaded).
Figure 9.3(e) shows the result of this operation.We see that, when the origin of

is on a border element of part of ceases to be contained in thus elim-
inating the location on which is centered as a possible member for the new
set.The net result is that the boundary of the set is eroded, as Fig. 9.3(e) shows.
When we use terminology such as “the structuring element is contained in the
set,” we mean specifically that the elements of and fully overlap. In other
words, although we showed and as arrays containing both shaded and
nonshaded elements, only the shaded elements of both sets are considered in
determining whether or not is contained in These concepts form the basis
of the material in the next section, so it is important that you understand the
ideas in Fig. 9.3 fully before proceeding.

9.2 Erosion and Dilation
We begin the discussion of morphology by studying two operations: erosion
and dilation. These operations are fundamental to morphological processing.
In fact, many of the morphological algorithms discussed in this chapter are
based on these two primitive operations.

A.B

BA
BA

B
A,BA,B

A,
BB,A.

BAB
B,A

3 * 3

In future illustrations, we
add enough background
points to form rectangular
arrays, but let the padding
be implicit when the
meaning is clear in order
to simplify the figures.

a b
c d e

630 Chapter 9 ! Morphological Image Processing

A

B

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.

original set (this is analogous to padding for spatial correlation and convolu-
tion, as discussed in Section 3.4.2). In this case, the structuring element is of
size with the origin in the center, so a one-element border that encom-
passes the entire set is sufficient, as Fig. 9.3(c) shows. As in Fig. 9.2, the struc-
turing element is filled with the smallest possible number of background
elements necessary to make it into a rectangular array [Fig. 9.3(d)].

Suppose that we define an operation on set using structuring element 
as follows: Create a new set by running over so that the origin of visits
every element of At each location of the origin of if is completely con-
tained in mark that location as a member of the new set (shown shaded);
else mark it as not being a member of the new set (shown not shaded).
Figure 9.3(e) shows the result of this operation.We see that, when the origin of

is on a border element of part of ceases to be contained in thus elim-
inating the location on which is centered as a possible member for the new
set.The net result is that the boundary of the set is eroded, as Fig. 9.3(e) shows.
When we use terminology such as “the structuring element is contained in the
set,” we mean specifically that the elements of and fully overlap. In other
words, although we showed and as arrays containing both shaded and
nonshaded elements, only the shaded elements of both sets are considered in
determining whether or not is contained in These concepts form the basis
of the material in the next section, so it is important that you understand the
ideas in Fig. 9.3 fully before proceeding.

9.2 Erosion and Dilation
We begin the discussion of morphology by studying two operations: erosion
and dilation. These operations are fundamental to morphological processing.
In fact, many of the morphological algorithms discussed in this chapter are
based on these two primitive operations.

A.B

BA
BA

B
A,BA,B

A,
BB,A.

BAB
B,A

3 * 3

In future illustrations, we
add enough background
points to form rectangular
arrays, but let the padding
be implicit when the
meaning is clear in order
to simplify the figures.

a b
c d e

Step 1: A set

Step 2: 
Structuring 

Element

Step 3: The set padded with 
background elements.

630 Chapter 9 ! Morphological Image Processing

A

B

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.

original set (this is analogous to padding for spatial correlation and convolu-
tion, as discussed in Section 3.4.2). In this case, the structuring element is of
size with the origin in the center, so a one-element border that encom-
passes the entire set is sufficient, as Fig. 9.3(c) shows. As in Fig. 9.2, the struc-
turing element is filled with the smallest possible number of background
elements necessary to make it into a rectangular array [Fig. 9.3(d)].

Suppose that we define an operation on set using structuring element 
as follows: Create a new set by running over so that the origin of visits
every element of At each location of the origin of if is completely con-
tained in mark that location as a member of the new set (shown shaded);
else mark it as not being a member of the new set (shown not shaded).
Figure 9.3(e) shows the result of this operation.We see that, when the origin of

is on a border element of part of ceases to be contained in thus elim-
inating the location on which is centered as a possible member for the new
set.The net result is that the boundary of the set is eroded, as Fig. 9.3(e) shows.
When we use terminology such as “the structuring element is contained in the
set,” we mean specifically that the elements of and fully overlap. In other
words, although we showed and as arrays containing both shaded and
nonshaded elements, only the shaded elements of both sets are considered in
determining whether or not is contained in These concepts form the basis
of the material in the next section, so it is important that you understand the
ideas in Fig. 9.3 fully before proceeding.

9.2 Erosion and Dilation
We begin the discussion of morphology by studying two operations: erosion
and dilation. These operations are fundamental to morphological processing.
In fact, many of the morphological algorithms discussed in this chapter are
based on these two primitive operations.

A.B

BA
BA

B
A,BA,B

A,
BB,A.

BAB
B,A

3 * 3

In future illustrations, we
add enough background
points to form rectangular
arrays, but let the padding
be implicit when the
meaning is clear in order
to simplify the figures.

a b
c d e

Step 4: The structuring 
element as a 

rectangular array.

Step 5: Set proposed by the structuring 
element.



Effrosyni Doutsi | ADA-X

Erosion and Dilation

206

ü The most fundamental morphological
operations are called erosion and
dilation.

ü Erosion: is an operation that usually
uses a structuring element for probing
and reducing the shapes contained in
the input image.

ü Dilation: is an operation that usually
uses a structuring element for probing
and expanding the shapes contained in
the input image.

ü Erosion ≠ Dilation

Erosion of the dark-blue 
square by a disk.

Dilation of the dark-blue 
square by a disk.
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ü If we consider two sets 𝐴 and 𝐵 in ℤc, the erosion of 𝐴
by 𝐵, denoted 𝐴⊖ 𝐵 is defined as

𝐴⊖ 𝐵 = 𝑧| 𝐵 s ⊆ 𝐴
ü The above equation indicates that the erosion of A by 𝐵

is the set of all points 𝑧 such that 𝐵, translated by 𝑧, is
contained in 𝐴.

ü The erosion can be expressed also in the following form:
𝐴⊖ 𝐵 = 𝑧| 𝐵 s ∩ 𝐴t = ∅

where 𝐴t is the complement of 𝐴 and ∅ is the empty
set.

Erosion of the dark-blue 
square by a disk.
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9.2 ! Erosion and Dilation 631

9.2.1 Erosion
With and as sets in the erosion of by denoted is defined as

(9.2-1)

In words, this equation indicates that the erosion of by is the set of all
points such that translated by is contained in In the following discus-
sion, set is assumed to be a structuring element. Equation (9.2-1) is the
mathematical formulation of the example in Fig. 9.3(e), discussed at the end of
the last section. Because the statement that has to be contained in is
equivalent to not sharing any common elements with the background, we
can express erosion in the following equivalent form:

(9.2-2)

where, as defined in Section 2.6.4, is the complement of and is the
empty set.

Figure 9.4 shows an example of erosion. The elements of and are
shown shaded and the background is white. The solid boundary in Fig. 9.4(c)
is the limit beyond which further displacements of the origin of would
cause the structuring element to cease being completely contained in 
Thus, the locus of points (locations of the origin of ) within (and includ-
ing) this boundary, constitutes the erosion of by We show the erosion
shaded in Fig. 9.4(c). Keep in mind that that erosion is simply the set of
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FIGURE 9.5 Using
erosion to remove
image compo-
nents. (a) A

binary
image of a wire-
bond mask.
(b)–(d) Image
eroded using
square structuring
elements of sizes

and ,
respectively. The
elements of the
SEs were all 1s.

45 * 45
11 * 11, 15 * 15,

486 * 486

values of that satisfy Eq. (9.2-1) or (9.2-2). The boundary of set is
shown dashed in Figs. 9.4(c) and (e) only as a reference; it is not part of the
erosion operation. Figure 9.4(d) shows an elongated structuring element,
and Fig. 9.4(e) shows the erosion of by this element. Note that the origi-
nal set was eroded to a line.

Equations (9.2-1) and (9.2-2) are not the only definitions of erosion (see
Problems 9.9 and 9.10 for two additional, equivalent definitions.) However,
these equations have the distinct advantage over other formulations in that
they are more intuitive when the structuring element is viewed as a spatial
mask (see Section 3.4.1).
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! Suppose that we wish to remove the lines connecting the center region to
the border pads in Fig. 9.5(a). Eroding the image with a square structuring
element of size whose components are all 1s removed most of the
lines, as Fig. 9.5(b) shows. The reason the two vertical lines in the center were
thinned but not removed completely is that their width is greater than 11
pixels. Changing the SE size to and eroding the original image again
did remove all the connecting lines, as Fig. 9.5(c) shows (an alternate ap-
proach would have been to erode the image in Fig. 9.5(b) again using the
same SE). Increasing the size of the structuring element even more
would eliminate larger components. For example, the border pads can be re-
moved with a structuring element of size as Fig. 9.5(d) shows.45 * 45,
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Input Image. Erosion using a 11x11 
square.

Erosion using a 15x15 
square.

Erosion using a 45x45 
square.

The components of the square structuring element are all 1s!!!
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ü If we consider to sets 𝐴 and 𝐵 in ℤc, the dilation of 𝐴
by 𝐵, denoted 𝐴⨁𝐵 is defined as

𝐴⨁𝐵 = 𝑧| B𝐵 s ∩ 𝐴 ≠ ∅

ü The above equation indicates that the dilation of A
by 𝐵 is the set of all points 𝑧 such that V𝐵 and 𝐴
overlap by at least for one element.

ü The dilation can be expressed also in the following
form:

𝐴⨁𝐵 = 𝑧|[ B𝐵 s ∩ 𝐴] ⊆ 𝐴

Dilation of the dark-blue 
square by a disk.
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9.2 ! Erosion and Dilation 631

9.2.1 Erosion
With and as sets in the erosion of by denoted is defined as

(9.2-1)

In words, this equation indicates that the erosion of by is the set of all
points such that translated by is contained in In the following discus-
sion, set is assumed to be a structuring element. Equation (9.2-1) is the
mathematical formulation of the example in Fig. 9.3(e), discussed at the end of
the last section. Because the statement that has to be contained in is
equivalent to not sharing any common elements with the background, we
can express erosion in the following equivalent form:

(9.2-2)

where, as defined in Section 2.6.4, is the complement of and is the
empty set.

Figure 9.4 shows an example of erosion. The elements of and are
shown shaded and the background is white. The solid boundary in Fig. 9.4(c)
is the limit beyond which further displacements of the origin of would
cause the structuring element to cease being completely contained in 
Thus, the locus of points (locations of the origin of ) within (and includ-
ing) this boundary, constitutes the erosion of by We show the erosion
shaded in Fig. 9.4(c). Keep in mind that that erosion is simply the set of
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FIGURE 9.7
(a) Sample text of
poor resolution
with broken
characters (see
magnified view).
(b) Structuring
element.
(c) Dilation of (a)
by (b). Broken
segments were
joined.
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! One of the simplest applications of dilation is for bridging gaps. Figure 9.7(a)
shows the same image with broken characters that we studied in Fig. 4.49 in
connection with lowpass filtering. The maximum length of the breaks is
known to be two pixels. Figure 9.7(b) shows a structuring element that can be
used for repairing the gaps (note that instead of shading, we used 1s to denote
the elements of the SE and 0s for the background; this is because the SE is
now being treated as a subimage and not as a graphic). Figure 9.7(c) shows
the result of dilating the original image with this structuring element. The
gaps were bridged. One immediate advantage of the morphological approach
over the lowpass filtering method we used to bridge the gaps in Fig. 4.49 is

EXAMPLE 9.2:
An illustration of
dilation.
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! One of the simplest applications of dilation is for bridging gaps. Figure 9.7(a)
shows the same image with broken characters that we studied in Fig. 4.49 in
connection with lowpass filtering. The maximum length of the breaks is
known to be two pixels. Figure 9.7(b) shows a structuring element that can be
used for repairing the gaps (note that instead of shading, we used 1s to denote
the elements of the SE and 0s for the background; this is because the SE is
now being treated as a subimage and not as a graphic). Figure 9.7(c) shows
the result of dilating the original image with this structuring element. The
gaps were bridged. One immediate advantage of the morphological approach
over the lowpass filtering method we used to bridge the gaps in Fig. 4.49 is

EXAMPLE 9.2:
An illustration of
dilation.
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! One of the simplest applications of dilation is for bridging gaps. Figure 9.7(a)
shows the same image with broken characters that we studied in Fig. 4.49 in
connection with lowpass filtering. The maximum length of the breaks is
known to be two pixels. Figure 9.7(b) shows a structuring element that can be
used for repairing the gaps (note that instead of shading, we used 1s to denote
the elements of the SE and 0s for the background; this is because the SE is
now being treated as a subimage and not as a graphic). Figure 9.7(c) shows
the result of dilating the original image with this structuring element. The
gaps were bridged. One immediate advantage of the morphological approach
over the lowpass filtering method we used to bridge the gaps in Fig. 4.49 is

EXAMPLE 9.2:
An illustration of
dilation.
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ü Erosion and dilation are duals of each other with respect to set
complementation and reflection. That is

(𝐴 ⊖ 𝐵)t = 𝐴t⊕ B𝐵

(𝐴⊕ 𝐵)t = 𝐴t⊖ B𝐵

ü Erosion of 𝐴 by 𝐵 is the complement of the dilation of 𝐴t by
B𝐵, and vice versa.

ü The duality is a very useful property particularly when the
structuring element is symmetric with respect to its origin, so
that B𝐵 = 𝐵.
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ü Opening: is an operation that
generally smoothes the contour of an
object, breaks narrow isthmuses and
eliminated thin protrusions.

ü Closing: is an operation that also tends
to smooth sections of contours, but as
apposed to opening, it generally fuses
narrow breaks and long thin gulfs,
eliminated small holes and fills gaps in
the contour.

Opening of the dark-blue 
square by a disk.

Closing of the dark-blue 
square by a disk.
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ü The opening 𝐴 by 𝐵 is the erosion of 𝐴 by
𝐵, followed by a dilation of the result by 𝐵

𝐴 ∘ 𝐵 = (𝐴⊖ 𝐵)⊕

ü The opening can be also expressed as a
fitting process such as

𝐴 ∘ 𝐵 =[ 𝐵 s| 𝐵 s ⊆ 𝐴

where ⋃{. } denoted the union of all the
sets inside the braces.

Opening of the dark-blue 
square by a disk.
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636 Chapter 9 ! Morphological Image Processing

Translates of B in A

A ! B ! !{(B)z|(B)z " A}

B

A

FIGURE 9.8 (a) Structuring element “rolling” along the inner boundary of (the dot
indicates the origin of ). (b) Structuring element. (c) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade in (a)
for clarity.

A
B

AB

The opening of set by structuring element denoted is de-
fined as

(9.3-1)

Thus, the opening by is the erosion of by followed by a dilation of
the result by 

Similarly, the closing of set by structuring element denoted is
defined as

(9.3-2)

which says that the closing of by is simply the dilation of by followed
by the erosion of the result by 

The opening operation has a simple geometric interpretation (Fig. 9.8).
Suppose that we view the structuring element as a (flat) “rolling ball.” The
boundary of is then established by the points in that reach the
farthest into the boundary of as is rolled around the inside of this bound-
ary. This geometric fitting property of the opening operation leads to a set-
theoretic formulation, which states that the opening of by is obtained by
taking the union of all translates of that fit into That is, opening can be ex-
pressed as a fitting process such that

(9.3-3)

where denotes the union of all the sets inside the braces.
Closing has a similar geometric interpretation, except that now we roll on

the outside of the boundary (Fig. 9.9).As discussed below, opening and closing
are duals of each other, so having to roll the ball on the outside is not unex-
pected. Geometrically, a point is an element of if and only if

for any translate of that contains Figure 9.9 illustrates
the basic geometrical properties of closing.

w.(B)z(B)z ¨ A Z "
A • Bw

B
´ 5 #6 A ! B = d E(B)z ƒ (B)z 8 AF

A.B
BA

BA
BA ! B

B

B.
B,ABA

A • B = (A { B) | B

A • B,B,A
B.

B,ABA

A ! B = (A | B) { B

A ! B,B,A

a b c d



Effrosyni Doutsi | ADA-X

Closing

217

ü The closing of set 𝐴 by the structuring
element 𝐵 is the dilation of 𝐴 by 𝐵 ,
followed by an erosion of the result by 𝐵

𝐴 _ 𝐵 = (𝐴 ⊕ 𝐵)⊖ 𝐵

ü The closing is dual of opening thus a point
𝑤 is an element of closing if and only if

𝐴 _ 𝐵 = 𝐵 s ∩ 𝐴 ≠ ∅

where ⋃{. } denoted the union of all the
sets inside the braces.

Closing of the dark-blue 
square by a disk.
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9.3 ! Opening and Closing 637

A

A ! B

A " B

A ! B ! (A " B) ! B

A !! B ! (A ! B) " B

FIGURE 9.10
Morphological
opening and
closing. The
structuring
element is the
small circle shown
in various
positions in 
(b). The SE was
not shaded here
for clarity. The
dark dot is the
center of the
structuring
element.

EXAMPLE 9.3:
A simple
illustration of
morphological
opening and
closing.

! Figure 9.10 further illustrates the opening and closing operations. Figure
9.10(a) shows a set and Fig. 9.10(b) shows various positions of a disk struc-
turing element during the erosion process. When completed, this process re-
sulted in the disjoint figure in Fig. 9.10(c). Note the elimination of the bridge
between the two main sections. Its width was thin in relation to the diameter of

A,

A ! B
B

A

FIGURE 9.9 (a) Structuring element “rolling” on the outer boundary of set (b) The
heavy line is the outer boundary of the closing. (c) Complete closing (shaded). We did
not shade in (a) for clarity.A

A.B

a b c

a
b
d

c
e

f g
h i
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ü Morphological operations can be used to construct filters
similar in concept to the spatial filters related to:

ü Image denoising

ü Edge detection

ü Noise and its effects can be eliminated if we apply for example
the opening followed by the closing operation.

ü Edges can be detected if we apply the dilation operation, then
we apply the erosion operation and then we compute the
difference of these to results.
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9.3 ! Opening and Closing 639

[(A ! B) ! B] " B ! (A ! B) ! B(A ! B) ! B

(A " B) ! B ! A ! B

A " B 1 1 1
1 1 1
1 1 1

A B

FIGURE 9.11
(a) Noisy image.
(b) Structuring
element.
(c) Eroded image.
(d) Opening of 
(e) Dilation of the
opening.
(f) Closing of the
opening.
(Original image
courtesy of the
National Institute
of Standards and
Technology.)

A.

result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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(a) Noisy image.
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A.

result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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f
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9.3 ! Opening and Closing 639

[(A ! B) ! B] " B ! (A ! B) ! B(A ! B) ! B

(A " B) ! B ! A ! B

A " B 1 1 1
1 1 1
1 1 1

A B

FIGURE 9.11
(a) Noisy image.
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(c) Eroded image.
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opening.
(f) Closing of the
opening.
(Original image
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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(a) Noisy image.
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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(a) Noisy image.
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). !
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result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
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Ø In 1950s a novel transformation, called wavelet transform, was
introduced as an alternative of the Fourier transform.

Ø Unlike the Fourier Transform, whose basis functions are sinusoids,
wavelet transforms are based on small waves, called wavelets, of
varying frequency and limited duration.

Ø In 1987, wavelets were first shown to be the foundation of a powerful
new approach to signal processing and analysis, called multiresolution
theory (Mallat 1987).

Ø Multiresolution Advantages: Features that might be undetected at one
resolution may be easy to detect at another.
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Ø Pyramids are powerful, yet
conceptually simple structure for
representing images at more than
one resolution.

Ø Base level 𝐽 is of size 2u× 2u or
𝑁×𝑁

Ø Top level 0 is of size 2b× 2b or 1×1.

Ø The pyramid is composed of 𝐽 + 1
resolution levels from 2u× 2u to
2b× 2b.

Image Pyramids (Burt and Adelson, 1983)
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section—local histograms can vary significantly from one part of an image to
another, making statistical modeling over the span of an entire image a diffi-
cult, or impossible task.

7.1.1 Image Pyramids
A powerful, yet conceptually simple structure for representing images at more
than one resolution is the image pyramid (Burt and Adelson [1983]). Originally
devised for machine vision and image compression applications, an image
pyramid is a collection of decreasing resolution images arranged in the shape
of a pyramid. As can be seen in Fig. 7.2(a), the base of the pyramid contains a
high-resolution representation of the image being processed; the apex con-
tains a low-resolution approximation. As you move up the pyramid, both size
and resolution decrease. Base level is of size or where

apex level 0 is of size and general level is of size 
where Although the pyramid shown in Fig. 7.2(a) is composed of

resolution levels from to most image pyramids are trun-
cated to levels, where and 
That is, we normally limit ourselves to reduced resolution approximations of
the original image; a (i.e., single pixel) approximation of a 
image, for example, is of little value.The total number of pixels in a level
pyramid for is

Figure 7.2(b) shows a simple system for constructing two intimately related
image pyramids. The Level approximation output provides the imagesj - 1

N2 ¢1 + 1
(4)1 + 1

(4)2 + Á + 1
(4)P ≤ … 4

3
N2

P 7 0
P + 1
512 * 5121 * 1

P
j = J - P, Á , J - 2, J - 1, J.1 … P … JP + 1

20 * 20,2J * 2JJ + 1
0 … j … J.

2j * 2j,j1 * 1,J = log2 N,
N * N,2J * 2JJ

a
b
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Ø Step 1: Filter and
downsample by a factor of 2
the level 𝐽 input image.

Ø Step 2: Upsample and filter
the generated approximation
in step 1 generating an image
of the same dimensions as the
level 𝐽 input image.

Ø Step 3: Compute the
difference between the
prediction image of step 2 and
the input to step 1.

Laplacian Pyramid Algorithm
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Example466 Chapter 7 ! Wavelets and Multiresolution Processing

FIGURE 7.3
Two image
pyramids and
their histograms:
(a) an
approximation
pyramid;
(b) a prediction
residual pyramid.

7.1.2 Subband Coding
Another important imaging technique with ties to multiresolution analysis is
subband coding. In subband coding, an image is decomposed into a set of
bandlimited components, called subbands. The decomposition is performed so
that the subbands can be reassembled to reconstruct the original image with-
out error. Because the decomposition and reconstruction are performed by
means of digital filters, we begin our discussion with a brief introduction to
digital signal processing (DSP) and digital signal filtering.

Consider the simple digital filter in Fig. 7.4(a) and note that it is constructed
from three basic components—unit delays, multipliers, and adders. Along the
top of the filter, unit delays are connected in series to create delayed
(i.e., right shifted) versions of the input sequence Delayed sequence

for example, isf(n - 2),
f(n).

K-  1

The approximation 
pyramid in (a) is called a
Gaussian pyramid 
because a Gaussian filter
was used to construct it.
The prediction residual
pyramid in (b) is often
called a Laplacian 
pyramid; note the 
similarity in appearance
with the Laplacian fil-
tered images in Chapter 3.

The term “delay” implies
a time-based input 
sequence and reflects the
fact that in digital signal
filtering, the input is 
usually a sampled analog
signal.

a
b

Step 1

Step 2
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Example

 

 2 

1. Compute the Laplacian pyramid by subtracting every two 

sequential layers of the Gaussian pyramid (upsample the 

downsampled scales, see Fig. 1). 

2. Construct 5 Laplacian decomposition layers /), /*, /,, /-, /. 

where /. = 	(.. 

3.  Combine the Gaussian and Laplacian layers to recover the 

original image ().  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. This example illustrates the Gaussian and the Laplacian 

pyramid that consists of 4 layers. 

What does blurring take away?
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Time-series
• High temporal resolution

• Uncertainty in the frequency

Fourier Transform
• High frequency resolution
• Uncertainty of the exact 

time 

Fourier Transform

Time-series Fourier of Time-series

Why Wavelets are important?



Effrosyni Doutsi | ADA-X 231

time

fr
eq
ue
nc
y

time

fr
eq
ue
nc
y

Spectrogram
• A grid of equally weighted 

time and frequency
• We know when specific 

frequencies exist in time

Wavelets
• Multiple scales in time 

and frequency
• Hierarchical grading of 

time and frequency 
information

Spectrogram / Gabor filter
Multiresolution Analysis / 

Wavelets

Why Wavelets are important?



Ø There is a mother wavelet 𝜓 𝑡

Ø From this mother wavelet we derive all the smaller wavelets

𝜓v,V 𝑡 =
1
𝑎
𝜓

𝑡 − 𝑏
𝑎

Ø 𝑎 is the scale parameter

Ø b is the translation parameter

Effrosyni Doutsi | ADA-X

What does the Wavelet look like?
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Different scales
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Expanded wavelet - Low frequency 
components with bad time 

resolution

Shrunken Wavelet - High frequency 
components with good time 

resolution

Large values of 𝑎 Small values of 𝑎
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Different Wavelet types
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Ø Haar Transform is the oldest and simplest known
orthonormal wavelets.

Ø Haar Transform is expressed in the following matrix form

𝑇 = 𝐻𝐹𝐻w

where 𝐹 is an 𝑁×𝑁 image matrix, 𝐻 is an 𝑁×𝑁 Haar
transformation matrix and 𝑇 is the resulting 𝑁×𝑁 transform.
𝐻 is not symmetric thus we need to compute its transpose
𝐻w.

Introduction to Haar Transform
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Haar Wavelet
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2D 4-band filter bank
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FIGURE 7.7
A two-
dimensional, four-
band filter bank
for subband
image coding.

(7.1-13)

which defines orthonormality for perfect reconstruction filter banks. In addi-
tion to Eq. (7.1-13), orthonormal filters can be shown to satisfy the following
two conditions:

(7.1-14)

where the subscript on is used to indicate that the number of filter coef-
ficients must be divisible by 2 (i.e., an even number). As Eq. (7.1-14) indicates,
synthesis filter is related to by order reversal and modulation. In addi-
tion, both and are order-reversed versions of synthesis filters, and 
respectively. Thus, an orthonormal filter bank can be developed around the
impulse response of a single filter, called the prototype; the remaining filters
can be computed from the specified prototype’s impulse response. For
biorthogonal filter banks, two prototypes are required; the remaining filters
can be computed via Eq. (7.1-10) or (7.1-11). The generation of useful proto-
type filters, whether orthonormal or biorthogonal, is beyond the scope of this
chapter. We simply use filters that have been presented in the literature and
provide references for further study.

Before concluding the section with a 2-D subband coding example, we note
that 1-D orthonormal and biorthogonal filters can be used as 2-D separable
filters for the processing of images. As can be seen in Fig. 7.7, the separable fil-
ters are first applied in one dimension (e.g., vertically) and then in the other
(e.g., horizontally) in the manner introduced in Section 2.6.7. Moreover, down-
sampling is performed in two stages—once before the second filtering opera-
tion to reduce the overall number of computations. The resulting filtered

g1,g0h1h0

g0g1

Keven

hi (n) = gi (Keven - 1 - n),  i = 50, 16g1(n) = (-1)ng0(Keven - 1 - n)

8gi(n), gj(n + 2m)9 = d(i - j)d(m),  i, j = 50, 16

Step 1
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Before concluding the section with a 2-D subband coding example, we note
that 1-D orthonormal and biorthogonal filters can be used as 2-D separable
filters for the processing of images. As can be seen in Fig. 7.7, the separable fil-
ters are first applied in one dimension (e.g., vertically) and then in the other
(e.g., horizontally) in the manner introduced in Section 2.6.7. Moreover, down-
sampling is performed in two stages—once before the second filtering opera-
tion to reduce the overall number of computations. The resulting filtered

g1,g0h1h0

g0g1

Keven

hi (n) = gi (Keven - 1 - n),  i = 50, 16g1(n) = (-1)ng0(Keven - 1 - n)

8gi(n), gj(n + 2m)9 = d(i - j)d(m),  i, j = 50, 16

Step 2.1
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2D 4-band filter bank

7.1 ! Background 471

! h0(m)

f(m,n)

! h0(n)

! h1(n)

! h0(n)

! h1(n)

! h1(m)

Rows

Rows
(along m)

Columns
(along n)

Columns

Columns

Columns

a(m,n)

dV(m,n)

dH(m,n)

dD(m,n)

2T

2T

2T

2T

2T

2T

FIGURE 7.7
A two-
dimensional, four-
band filter bank
for subband
image coding.

(7.1-13)

which defines orthonormality for perfect reconstruction filter banks. In addi-
tion to Eq. (7.1-13), orthonormal filters can be shown to satisfy the following
two conditions:

(7.1-14)

where the subscript on is used to indicate that the number of filter coef-
ficients must be divisible by 2 (i.e., an even number). As Eq. (7.1-14) indicates,
synthesis filter is related to by order reversal and modulation. In addi-
tion, both and are order-reversed versions of synthesis filters, and 
respectively. Thus, an orthonormal filter bank can be developed around the
impulse response of a single filter, called the prototype; the remaining filters
can be computed from the specified prototype’s impulse response. For
biorthogonal filter banks, two prototypes are required; the remaining filters
can be computed via Eq. (7.1-10) or (7.1-11). The generation of useful proto-
type filters, whether orthonormal or biorthogonal, is beyond the scope of this
chapter. We simply use filters that have been presented in the literature and
provide references for further study.

Before concluding the section with a 2-D subband coding example, we note
that 1-D orthonormal and biorthogonal filters can be used as 2-D separable
filters for the processing of images. As can be seen in Fig. 7.7, the separable fil-
ters are first applied in one dimension (e.g., vertically) and then in the other
(e.g., horizontally) in the manner introduced in Section 2.6.7. Moreover, down-
sampling is performed in two stages—once before the second filtering opera-
tion to reduce the overall number of computations. The resulting filtered

g1,g0h1h0

g0g1

Keven

hi (n) = gi (Keven - 1 - n),  i = 50, 16g1(n) = (-1)ng0(Keven - 1 - n)

8gi(n), gj(n + 2m)9 = d(i - j)d(m),  i, j = 50, 16

Step 2.2
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7.1 ! Background 473

FIGURE 7.9
A four-band split
of the vase in 
Fig. 7.1 using the
subband coding
system of Fig. 7.7.
The four
subbands that
result are the 
(a) approximation,
(b) horizontal
detail, (c) vertical
detail, and 
(d) diagonal detail
subbands.

both biorthogonal (they satisfy Eq. 7.1-12) and orthonormal (they satisfy Eq. 7.1-
13).As a result, the Daubechies 8-tap filters in Fig. 7.8 support error-free recon-
struction of the decomposed input.

A four-band split of the image of a vase in Fig. 7.1, based on the
filters in Fig. 7.8, is shown in Fig. 7.9. Each quadrant of this image is a subband
of size Beginning with the upper-left corner and proceeding in a
clockwise manner, the four quadrants contain approximation subband hori-
zontal detail subband diagonal detail subband and vertical detail sub-
band respectively. All subbands, except the approximation subband in
Fig. 7.9(a), have been scaled to make their underlying structure more visible.
Note the visual effects of aliasing that are present in Figs. 7.9(b) and (c)—the 
and subbands. The wavy lines in the window area are due to the downsam-
pling of a barely discernable window screen in Fig. 7.1. Despite the aliasing, the
original image can be reconstructed from the subbands in Fig. 7.9 without
error. The required synthesis filters, and are determined from
Table 7.1 and Eq. (7.1-14), and incorporated into a filter bank that roughly
mirrors the system in Fig. 7.7. In the new filter bank, filters for 
are replaced by their counterparts, and upsamplers and summers are
added. !

gi(n)
i = 50, 16hi(n)

g1(n),g0(n)

dV
dH

dV,
dD,dH,

a,
256 * 256.

512 * 512

c d
a b

See Section 4.5.4 for
more on aliasing.

LL

LH

HL

HH
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FIGURE 7.10
(a) A discrete
wavelet transform
using Haar 
basis functions. Its
local histogram
variations are also
shown. (b)–(d)
Several different
approximations
(

and
) that

can be obtained
from (a).

256 * 256
128 * 128,
64 * 64,

H2

and respectively, were generated from
the subimages in Fig. 7.10(a). A perfect reconstruction of the
original image is also possible.

3. Like the subband coding decomposition in Fig. 7.9, a simple real-coefficient,
FIR filter bank of the form given in Fig. 7.7 was used to produce Fig. 7.10(a).
After the generation of a four subband image like that of Fig. 7.9, the

approximation subband was decomposed and replaced by four
subbands (using the same filter bank), and the resulting approx-

imation subband was again decomposed and replaced by four sub-
bands. This process produced the unique arrangement of subimages that

64 * 64
128 * 128
256 * 256

512 * 512
256 * 256,64 * 64, 128 * 128,

b c d
a
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476 Chapter 7 ! Wavelets and Multiresolution Processing

FIGURE 7.10
(a) A discrete
wavelet transform
using Haar 
basis functions. Its
local histogram
variations are also
shown. (b)–(d)
Several different
approximations
(

and
) that

can be obtained
from (a).

256 * 256
128 * 128,
64 * 64,

H2

and respectively, were generated from
the subimages in Fig. 7.10(a). A perfect reconstruction of the
original image is also possible.

3. Like the subband coding decomposition in Fig. 7.9, a simple real-coefficient,
FIR filter bank of the form given in Fig. 7.7 was used to produce Fig. 7.10(a).
After the generation of a four subband image like that of Fig. 7.9, the

approximation subband was decomposed and replaced by four
subbands (using the same filter bank), and the resulting approx-

imation subband was again decomposed and replaced by four sub-
bands. This process produced the unique arrangement of subimages that

64 * 64
128 * 128
256 * 256

512 * 512
256 * 256,64 * 64, 128 * 128,

b c d
a

LL2



476 Chapter 7 ! Wavelets and Multiresolution Processing

FIGURE 7.10
(a) A discrete
wavelet transform
using Haar 
basis functions. Its
local histogram
variations are also
shown. (b)–(d)
Several different
approximations
(

and
) that

can be obtained
from (a).

256 * 256
128 * 128,
64 * 64,

H2

and respectively, were generated from
the subimages in Fig. 7.10(a). A perfect reconstruction of the
original image is also possible.

3. Like the subband coding decomposition in Fig. 7.9, a simple real-coefficient,
FIR filter bank of the form given in Fig. 7.7 was used to produce Fig. 7.10(a).
After the generation of a four subband image like that of Fig. 7.9, the

approximation subband was decomposed and replaced by four
subbands (using the same filter bank), and the resulting approx-

imation subband was again decomposed and replaced by four sub-
bands. This process produced the unique arrangement of subimages that

64 * 64
128 * 128
256 * 256

512 * 512
256 * 256,64 * 64, 128 * 128,

b c d
a
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Image Compression

v Easier in processing

v Suited for audio and video

v Low cost

v Less bandwidth

v Accurate representation of a 

sound

v Easily compressed

v Less expensive and more 

common equipment

v Multiple editing tools 

v Easy to transmit over networks
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Image Compression

v Low quality signals

v Cables are sensitive

v Difficult to synchronize 

analog signals

v Limitations in editing

v Data can be corrupted

v Sampling/quantization might 

cause loss of information

v A/D and D/A demand mixed-

signal hardware

v Requires great bandwidth

v Systems/processing is more 

complex



Effrosyni Doutsi | ADA-X 246

Digital Images

Marc ANTONINI – Techniques de compression pour le codage des images et des vidéos 3

La Donnée Numérique

Image échantillonnée + numérisée

1 échantillon =  1 pixel
(picture element)

représentation sur un nombre fini de niveaux

- image 256 niveaux de gris
- dynamique de 0 (noir) à 255 (blanc)
- chaque niveau est représenté par 8 éléments binaires (0 ou 1)

Exemple :

--> 8 bits/pixel

512 
51

2

262.144 pixels

2.097.152 bits!! 

Example

Ø Image with 256 different gray levels

Ø The range of these scales is between 0
(black) and 255 (white).

Ø Each level is represented by 8 binary
elements (0 or 1) = 8bits/pixel.
i.e. 00000101 = ?

0×2y + 0×2z + 0×2{ + 0×2| + 0×2}
+ 1×2c + 0×2d + 1×2b = 4 + 1 = 5
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Color Digital Images
512 

51
2

3 ∗ 262.144 pixels
6.291.456 bits!!
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Image Resolution

1920×1080

1280×720

640×480

3840×2160

7680×4320

≈ 99 MBytes!!
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Video Framerate

12 frames / sec

24 frames / sec

30 frames / sec

60 frames / sec
1 second of an 8K video with 
12 frames per second (fps) 

costs 1GBytes!!
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v Let 𝑟� a discrete random variable in the interval [0, 𝐿 −
1] which is used to represent the intensities of an 𝑀×𝑁
image

v Each variable occurs with probability 𝑝� 𝑟� such that

𝑝� 𝑟� =
𝑛�
𝑀𝑁

for 𝑘 = 0,1,2,3, … , 𝐿 − 1

where 𝐿 is the number of intensity values and 𝑛� the
number of times the 𝑘 -th intensity appears in the
image.

Coding Redundancy (1/2)
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v Let 𝑙(𝑟�) the number of bits used to represent each
value 𝑟�, then the average number of bits required to
represent each pixels is

𝐿vj� = t
��b

�gd

𝑙(𝑟�)𝑝�(𝑟�)

v The total number of bits required to represent an 𝑀×𝑁
image is

𝐿���v� = 𝑀𝑁𝐿vj�

Coding Redundancy (2/2)
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v Given a source of statistically independent random
events form a discrete set of possible events
𝑟d, 𝑟c, … , 𝑟� with associated probabilities
𝑝(𝑟d), 𝑝(𝑟c), … , 𝑃𝑟�) , the average information per

source output, called entropy of the source, is

𝐻 = −t
��b

�gd

𝑝 𝑟� log 𝑝(𝑟�)

Shannon Entropy
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Example

528 Chapter 8 ! Image Compression

8.1.1 Coding Redundancy
In Chapter 3, we developed techniques for image enhancement by histogram
processing, assuming that the intensity values of an image are random quanti-
ties. In this section, we use a similar formulation to introduce optimal informa-
tion coding.

Assume that a discrete random variable in the interval is used
to represent the intensities of an image and that each occurs with
probability As in Section 3.3,

(8.1-3)

where is the number of intensity values, and is the number of times that
the kth intensity appears in the image. If the number of bits used to represent
each value of is then the average number of bits required to represent
each pixel is

(8.1-4)

That is, the average length of the code words assigned to the various intensity
values is found by summing the products of the number of bits used to repre-
sent each intensity and the probability that the intensity occurs. The total
number of bits required to represent an image is If the
intensities are represented using a natural m-bit fixed-length code,† the
right-hand side of Eq. (8.1-4) reduces to bits. That is, when is
substituted for The constant can be taken outside the summation,
leaving only the sum of the for which, of course, equals 1.0 … k … L - 1,pr1rk2 ml1rk2. mLavg = mm

MNLavg.M * N

Lavg = a
L - 1

k = 0
l1rk2pr1rk2

l1rk2,rk

nkL

pr1rk2 =
nk

MN
k = 0, 1, 2, Á , L - 1

pr(rk).
rkM * N

[0, L - 1]rk

Code 1 Code 2

0.25 01010111 8 01 2
0.47 10000000 8 1 1
0.25 11000100 8 000 3
0.03 11111111 8 001 3

for 0 — 8 — 0k Z  87, 128, 186, 255rk

r255 = 255
r186 = 186
r128 = 128
r87 = 87

l 21rk2l11rk2p r1rk2rk
TABLE 8.1 
Example of
variable-length
coding.

EXAMPLE 8.1:
A simple
illustration of
variable-length
coding.

†A natural binary code is one in which each event or piece of information to be encoded (such as inten-
sity value) is assigned one of codes from an m-bit binary counting sequence.2m

! The computer-generated image in Fig. 8.1(a) has the intensity distribution
shown in the second column of Table 8.1. If a natural 8-bit binary code (denoted
as code 1 in Table 8.1) is used to represent its 4 possible intensities, —the
average number of bits for code 1—is 8 bits, because bits for all rk.l11rk2 = 8

Lavg

Code 1: 𝐿vj� = 0.25×8 + 0.47×8 + 0.25×8 + 0.03×8 = 8 bits /pixel

Shannon: 𝐻 = −{0.25 log 0.25 + 0.47 log 0.47 + 0.25 log 0.25 + 0.03 log 0.03]
= 1.6614 bits/pixel
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v Shannon’s first theorem also called noiseless coding
theorem assures that a source can be represented by
the minimum number of bits.

lim
f→�

𝐿vj�,f
𝑛 = 𝐻

Shannon 1st Theorem



Effrosyni Doutsi | ADA-X 255

v If data contain irrelevant of repeated information are
said to be redundant

𝑅 = 1 −
1
𝐶

where 𝐶 is called compression ratio and it is defined as
𝐶 = V

�V

v If 𝐶 = 10 then there is a 90% of redundancy.

Compression Ratio – Redundancy
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Example

528 Chapter 8 ! Image Compression

8.1.1 Coding Redundancy
In Chapter 3, we developed techniques for image enhancement by histogram
processing, assuming that the intensity values of an image are random quanti-
ties. In this section, we use a similar formulation to introduce optimal informa-
tion coding.

Assume that a discrete random variable in the interval is used
to represent the intensities of an image and that each occurs with
probability As in Section 3.3,

(8.1-3)

where is the number of intensity values, and is the number of times that
the kth intensity appears in the image. If the number of bits used to represent
each value of is then the average number of bits required to represent
each pixel is

(8.1-4)

That is, the average length of the code words assigned to the various intensity
values is found by summing the products of the number of bits used to repre-
sent each intensity and the probability that the intensity occurs. The total
number of bits required to represent an image is If the
intensities are represented using a natural m-bit fixed-length code,† the
right-hand side of Eq. (8.1-4) reduces to bits. That is, when is
substituted for The constant can be taken outside the summation,
leaving only the sum of the for which, of course, equals 1.0 … k … L - 1,pr1rk2 ml1rk2. mLavg = mm

MNLavg.M * N

Lavg = a
L - 1

k = 0
l1rk2pr1rk2

l1rk2,rk

nkL

pr1rk2 =
nk

MN
k = 0, 1, 2, Á , L - 1

pr(rk).
rkM * N

[0, L - 1]rk

Code 1 Code 2

0.25 01010111 8 01 2
0.47 10000000 8 1 1
0.25 11000100 8 000 3
0.03 11111111 8 001 3

for 0 — 8 — 0k Z  87, 128, 186, 255rk

r255 = 255
r186 = 186
r128 = 128
r87 = 87

l 21rk2l11rk2p r1rk2rk
TABLE 8.1 
Example of
variable-length
coding.

EXAMPLE 8.1:
A simple
illustration of
variable-length
coding.

†A natural binary code is one in which each event or piece of information to be encoded (such as inten-
sity value) is assigned one of codes from an m-bit binary counting sequence.2m

! The computer-generated image in Fig. 8.1(a) has the intensity distribution
shown in the second column of Table 8.1. If a natural 8-bit binary code (denoted
as code 1 in Table 8.1) is used to represent its 4 possible intensities, —the
average number of bits for code 1—is 8 bits, because bits for all rk.l11rk2 = 8

Lavg

Code 1: 𝐿vj� = 0.25×8 + 0.47×8 + 0.25×8 + 0.03×8 = 8 bits

Code 2: 𝐿vj� = 0.25×2 + 0.47×1 + 0.25×3 + 0.03×3 = 1.81 bits

𝐶 =
256×256×8
118.621

=
8
1.81

≈ 4.42 𝑅 = 1 −
1
4.42 = 0.774
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v Objective: Transmission of big data (files, images,
videos, etc.)

v Applications:

Ø Data base

Ø Videoconference

Ø Transmission of interactive videos
Ø Telemedicine

Ø High Definition TV (HDTV)

Ø Digital Cinema

Compression - Motivation
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… through networks

v Internet
(text files, images, sounds, video, etc.)

v Telephone
(digital voice, etc.)

v Satellites
(space probes, high definition television, etc.)

v Radio-mobiles
(3rd generation GSM, UMTS, GSM, etc.)

Compression for Transmission…
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… to support different types

v Hard-disks, floppy disks (files)

v CD (sound, images)

v DVD (videos)

v BLUE RAY (2 hours of HDTV)
v USB key (files, sound, video, images)

Compression for Storage…
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v Real Time

v Telephone, video

(Rapid compression/decompression)

v Deferred time

v Disk storage (CD, CD ROM, DVD, USB key)

Slow compression / Rapid Decompression
v Satellite Images

Rapid Compression / Slow Decompression

Applications and Constraints (1/2)
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v Medicine: No artifacts (wrong diagnosis)

v Military: Keep the details (target detection),
Movement aspect (mobile tracking)

v Public videos: Eye / face masks (space and time)

v Computer Vision: Object detection, Classification, etc.

Applications and Constraints (2/2)
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The performance of a compression system
depends on:

v The compression ratio

(initial #bits/#bits after compression)

v The quality of the compressed signal

(subjective/objective criteria)

v The complexity of the system

(computational/memory cost)

Problem Statement

PROBLEM: How to optimize each of the 3 factors at the same time? 
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Standardization History
34 CHAPTER 2. STATE-OF-THE-ART AND BACKGROUND IN COMPRESSION

Figure 2.10: Standardization History.

2.4.3 Overview of JPEG and JPEG2000

Image compression algorithms have been used in numerous of applications like internet,
digital photography, medical imaging, remote sensing, surveillance, facsimile, etc. The
general structure of an image compression standard follows the coding principle which
is illustrate in Figure 2.2. As it has been mentioned in section 2.2, there are three
major steps which in case of JPEG are the DCT transform, the quantization and the
Huffman entropy coding [Bhaskaran and Konstantinides, 1997]. The successor of JPEG,
JPEG2000, follows the same principle but it uses DWT and Arithmetic entropy coding
instead [Christopoulos et al., 2000, Santa-Cruz et al., 2002].

2.4.3.1 Discrete Cosine Transform (DCT)

The DCT is a basis in image and video compression standards. The basic computation is
the transformation of an input block of a size N ×N , where N = 64, from the spatial to
the DCT domain:

F (u, v) =
1

4
C(u)C(v)

7
∑

x=0

7
∑

y=0

f(x, y) cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
, (2.24)

where f(x, y) is the input image and

C(u) =











1√
2
, if u = 0

1, otherwise

and C(v) =











1√
2

if v = 0

1 otherwise.

(2.25)

The blocksize had been initially chosen to be 8 × 8 for several reasons: first of all,
from the computational point of view such a small size of block is not memory demanding.
Secondly, if one increases the size of the block the efficiency of the algorithms is almost
unchanged. Last but not least, the spatial correlation maybe eliminated in case of larger
block. The block-based DCT decomposition is illustrated in Fig. 2.11 (a). The benefit of
the DCT transform is its orthogonality, which means that it is invertible and leads to a
perfect reconstruction of the input signal (see eq. 2.26). In addition, it has been proven that
DCT decorrelates as well as Karhunen-Loève transform, sources with correlate coefficients
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Progress of Compression Standards

46 CHAPTER 2. STATE-OF-THE-ART AND BACKGROUND IN COMPRESSION

2.6 IEEE 1857 Standard

The beginning of this section explains that there are numerous of applications which are
really demanding of low power consumption and complexity coding algorithms. One of
these applications is the CCTV systems. Nowadays, CCTV cameras have been placed
almost everywhere (i.e building, public places, streets, transport means, remote areas to
protect civil areas from natural disasters, working areas, etc.). Their primary goal is to
survey an area for 24h per day for security reasons. CCTV systems may survey areas where
the infrastructure for data transmission over communication channels is poor and require
low power consumption. In such a case, the increase of the computational cost and the
power consumption of HEVC is problematic. One should also keep in mind that during the
last few years almost every CCTV which is consisted of a single camera has been enriched
by double or higher number of cameras. As a result, the amount of videos of CCTV is
huge and it is impossible to be saved without efficient compression algorithms. However,
according to Fig. 2.19, it seems that the progression rate of compression standards is too
slow comparing to the explosive growth of the amount of data which need to be stored and
transmitted.

Figure 2.19: This graph illustrates the huge gad between the progress of compression algo-
rithms and the increase of the amount of data captured for video surveillance reasons. It
is expected according to the increase of rate that this gab is going to be bigger in the near
future [Gao et al., 2013].

An interesting solution to improve the intelligence of coding for CCTV systems was
proposed in [Gao et al., 2013], where the authors introduced the IEEE 1857 Standard for
Advanced Audio and Video Coding. The general framework of this algorithm is based
on H.264/MPEG-4/AVC standard but it enables to double the surveillance video coding
efficiency saving computational time. The IEEE 1857 takes advantage of the background
and foreground data of the scene. As a result, if the input surveyed area is coded in the
beginning, the number of I-pictures which are entirely coded/decoded could be significantly
reduced since the GoP is much larger comparing to other standards. This is the basic
improvement of IEEE 1857 standard which offers 45.89% bitrate gain and 45.86% time
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Compression Architecture

Transformation Quantization Entropy Coding

De-Quantization Entropy Decoding

DCT, DWT, 
Fourier, Filter 

banks, etc.

Loss of 
Information

Huffman, 
Arithmetic, 

Shannon, etc.

Communication 
Channel

Input:
Audio
Image
Video

Output:
Audio
Image
Video

Inverse
Transformation
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Digital Image

Image: two-dimensional random process 𝑓(𝑥, 𝑦) where (𝑥, 𝑦)
are the spatial coordinates of a pixel.

Pixel Intensities: random variable

Marc ANTONINI – Techniques de compression pour le codage des images et des vidéos 14

Une Image Numérique

Image = réalisation d’un processus aléatoire bidimensionnel ( )nmf ,
(m,n) sont les coordonnées spatiales d’un pixel

L’intensité d’un pixel = variable aléatoire

Hypothèses simplificatrices : stationnarité et ergodicité de ( )nmf ,

X

Exemple 1D :

1D Example
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Quantization Principle

v Quantization is the fundamental operation of a
compression system. Its purpose is to select for a given
input value, the closest neighbor belonging to a
predetermined finite set of digital values.

v A scalar quantizer of size 𝐿 a map 𝑄 of 𝑅 in a finite set 𝐶,
also called a dictionary (or codebook), containing L scalar
symbols

𝑄: 𝑅 → 𝐶 with C = {�̂�d, �̂�c, … , �̂��}

v We note �𝑥 = 𝑄 𝑥 the quantization of 𝑥.
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Uniform Scalar Quantizer

v Consider a discrete in time signal 𝑓 𝑥 that
belongs to the interval [−𝐴, 𝐴] with a uniform
distribution

𝑓# 𝑥 =
1
2𝐴

∀𝑘 ∈ [−𝐴, 𝐴]

v Divide the interval in 𝐿 = 2= different intervals
{𝑃',…, 𝑃>} of the same length Δ = (?

("

v Enumerate each interval

v Define a representative value for each interval.
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La quantification Scalaire Uniforme

Considérons un signal à temps discret         prenant ses valeurs dans
l'intervalle                 avec une loi de distribution uniforme :

La démarche la plus naturelle pour définir un quantificateur consiste à:

[ ]AA +� ,

1- Partitionner l'intervalle en             intervalles distincts                    de
    même longueur                   ;

2- Numéroter chaque intervalle ;

3- Définir un représentant par intervalle i, par exemple le milieu de
      l'intervalle que l’on notera

RL 2= P
1
,…,PL{ }

Définition

RA 22=�

iŝ

( ) [ ]AAs
A

sfS ,
2
1

���=

( )ns

-A A

1/2A
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Characteristic Function

Marc ANTONINI – Techniques de compression pour le codage des images et des vidéos 19

� = cste = pas de quantification

La quantification Scalaire Uniforme

iŝ

Illustration

( )ns

Pi = classe. L’ensemble des classe forme la partition P de l’espace : 

U
i

iPP = jiPP ji
���=Iavec

Pi zone « morte » de largeur z � �

𝑓(𝑥)

%𝑓(𝑥)

Deadzone of 
width z ≠ Δ

Quantization Step

𝑃! represent 
the different 
classes.
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Mid-rise vs Mid-tread Quantizer
�𝑥 = Δ

𝑥
Δ
+
1
2

Mid-rise quantizer Mid-tread quantizer

�𝑥 = Δ
𝑥
Δ
+
1
2
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Deadzone Quantizer

�𝑥 = Δ ×max 0,
𝑥 − 𝑧/2

Δ
+ 1

Mid-tread quantizer Deadzone quantizer
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Rate-Distortion Optimality
30 CHAPTER 2. STATE-OF-THE-ART AND BACKGROUND IN COMPRESSION

R

D

Figure 2.9: Operational RD curve. The cloud of points (in blue) correspond to the some
possible quantization choices which result in a pair of a rate and distortion. Some of these
points define the convex hull of this cloud which stands for the optimal rate-distortion pairs.
The red curve shows the achievable performance of the system for a given input of known
distribution.

on the distortion D and the rate R which needs to be optimized:

Jµ = D + µR, (2.11)

where µ ∈ R+ is the Lagrange multiplier. When µ ≈ 0 there is more emphasis to the
minimization of the distortion D enabling higher bitrate. On the other hand, if µ is large
tends to minimize R and increase the quality of the reconstruction. The estimation of the
Lagrange parameter is a highly complex problem [Ortega and Ramchandran, 1998]. For-
tunately, there have been proposed empirical approximations to effectively choose µ in a
practical mode selection scenario [Tseng et al., 2006]. If the source is a set of n decomposi-
tion layers after a given transform and if each subband i is orthogonal, the global distortion
D is the sum of subband distortions Di [Gersho and Gray, 1992] which is a function of rate:

D =
n
∑

i=1

Di =
n
∑

i=1

Di(Ri). (2.12)

When the filter is not biorthogonal then there should also be considered suitable weights
which account for non-orthogonality (see eq. 2.13) [Usevitch, 1996]. The goal of the La-
grangian optimization algorithm is to minimize J with respect to the distortion D and the
rate R under given constraints for both of these magnitudes. Although, sometimes it is
easier to describe two magnitudes at the same time the dependency effects are often ignored

v The RD optimization requires to minimize
the distortion D under the constraint of
𝑅 < 𝑅!() , where 𝑅!() is a maximum
bitrate bound.

v A very well known method which has
been used to seek fort the operational
rate-distortion curve is the Lagrangian
optimization algorithm.

v The optimization algorithm of the RD
curve for biorthogonal sources could be
described by a cost function 𝐽 depending
on the distortion 𝐷 and the rate 𝑅 which
need to be optimized

𝐽* = 𝐷 + 𝜇R

where 𝜇 is the Lagrange multiplier.
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In this course…

v We discussed about how we perceive the visual information

v Acquisition challenges (sampling theorem, aliasing, artifacts)

v Pixel-by-pixels transforms as well as filters applied to bigger areas of an
image

v The Convolution Theorem

v Morphological Analysis of an image

v Multiresolution analysis that allows us to extract different kind of
information at each level

v Basic principles in image coding




