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Who am I%

v Post-doctoral Researcher
v Signal Processing Lab (SPL), Institute of Computer Science (ICS),
Foundation for Research and Technology — Hellas (FORTH), Greece (since 2018).

v Ph.D. in Computer Science
I3S lab, CNRS, Université Cote d’Azur, 4G-TECHNOLOGY, France (2017).

v MSc in Computational Biology and Biomedicine
Université de Nice-Sophia Antipolis, France (2013).

v BSc in Computer Science and Biomedical Informatics
University of Thessaly, Greece (2012).
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Teaching Activities

v Visiting Professor, Hellenic Air Force Academy, Greece (since 2022).
v Visiting Professor, University of West Attica (UNIWA), Greece
Department of Informatics and Computer Science, (2022-23).
v Visiting Professor, Technical University of Crete (TUC),
School of Electrical and Computer Engineering (2020-21, 2021-22).
v Teaching assistant, Polytech of Nice, France (2014 - 2016).
Master II in Signal for Health, Telecommunications, Image and Multimedia.
v Teaching Assistant, Université Cote d’Azur, France.
Master I Biomedical Engineering, (2014 - 2016).
v Teaching Assistant, Institut Universitaire de Technologie (IUT), France (2014-2016).
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Professional Pathway

v' 10.2021 - now : Principal Investigator / BrainSIM Project Signal Processing Lab (SPL), Institute of Computer
Science (ICS), Foundation for Research and Technology — Hellas (FORTH), Greece.

v’ 04.2021 - 04.2022 : Principal Investigator / BRIEFING Project MediaCoding Team I3S laboratory, CNRS, Université
Cote d’Azur, France .

v' 06.2018 - 04.2021 . Associate Researcher / ARCHERS and KRIPIS Il Signal Processing Lab / Inst. of Computer
Science, Prof. Panagiotis Tsakalides, Foundation for Research and Technology — Hellas, Greece.

v/ 03.2012 - 03.2017 . Research Assistant MediaCoding Team, Dr. Marc Antonini, Prof. Lionel Fillatre, 13S laboratory,
CNRS, Université Cote d’Azur, France.

v’ 07.2012 - 09.2012 : Research Assistant Software & Knowledge Engineering Lab. Dr. Karampiperis, National
Center for Scientific Research Demokritos, Greece

v/ 09.2011 - 06.2012 : Research Assistant / Dr. Euripides Markou, Department of Computer Science & Biomedical
Informatics, University of Central Greece (now University of Thessaly), Greece
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My Research Interests...

v Neuro-inspired image processing

Goal: Utilize neuroscience models that approximate the structure and function of
the visual system in order to design and implement efficient algorithms according to
the visual perception.

v Machine Learning-based image compression.

Goal: Use Machine Learning algorithms to identify the Regions of Interests (Rol)
within the visual scene to drive the bit-allocation with respect to the visual scene
content.

v Computational Biology

Goal: Use Machine Learning algorithms to learn structural characteristics of
biological molecules (e.g. proteins) and predict their 3D shape.
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Course Outline

v' Digital Image Fundamentals
v Image Acquisition

v’ Image Transforms

v' Convolution Theorem

v Morphological Operations

v' Multiresolution Analysis

v Image Coding
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Image Perception
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Image Transform
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Image Enhancement
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Image Restoration
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Image Segmentation
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Image |

Classification
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Description

Classification
+ Localization

CAT

Object Detection

CAT, DOG, DUCK

Instance
Segmentation

CAT, DOG, DUCK

12






Course Outline

v

v Image Acquisition
v

v
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How to capture an image®

Was it always
that easy to
capture an

image?
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World’s first photograph

Joseph Nicéphore Niépce
(1765 -1833) .

In 1826, Joseph Nicéphore Niépce took the world’s
first photograph with his a camera. The
photograph was taken from the upstair’s windows
of Niépce’s estate in the Burgundy region of
France. This image was captured via a process
known as heliography, which used Bitumen of
Judea coated onto a piece of glass or metal; the
Bitumen than hardened in proportion to the
amount of light that hit it.
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History

In early 1920’s the Bartlane cable picture
transmission system reduced the time
required to transport a picture across the
Atlantic from more than a week to less than

three hours.

Baudot tape used to transmit pictures by . ' .
Bartlane system. Newspaper picture transmitted across the Atlantic.
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The first Digital Image

In 1957, a team led by Russell A. Kirsch at the National Institute of Standards and
Technology of US developed a binary digital version of an existing technology, so
that alphanumeric characters, diagrams, photographs and other graphics could be
transferred into digital computer memory. One of the first photographs scanned was
a picture of Kirsch's infant son Walden.

Russell A. Kirsch First digital photo of Kirsch’ son.
(1929 -2020)
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The first Moon picture

In 1964, the pictures of the Moon transmitted by Ranger 7 were processed by a
computer at the jet Propulsion Laboratory (Pasadena, California) to correct various
types of image distortion inherent in the on-board television camera.

First Moon picture. Drawing of the Ranger 7.
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Applications

Ultrasonic
imaging
@ot guidance

w Particle
physics
Aerial reconnaissance

Remote & mapping
sensing
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Big Data Era
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Definition

v An image (from Latin: imago) is an artifact that depicts visual perception,
such as a photograph or other two-dimensional picture, that resembles a
subject—usually a physical object—and thus provides a depiction of it
(Wikipedia).

v Digital images and digital video are, respectively, pictures and movies that
have been converted into a computer-readable binary format consisting of
logical Os and 1s. Usually, by an image we mean a still picture that does not
change with time, whereas a video evolves with time and generally contains
moving and/or changing objects (Al Bovik, “Handbook of Image and Video
Processing,” Academic Press, 2000).

v Monochrome image or simple image or still-image, refers to a two-
dimensional light function f(x,y) where x and y denote spatial coordinates
and the value of f at any point (x,y) is proportional to the brightness of the
image at that point. (R. Gonzalez, R. Woods, “Digital Image Processing,”
Addison-Wesley, 1983).



https://en.wikipedia.org/wiki/Latin_language
https://en.wikipedia.org/wiki/Visual_perception
https://en.wikipedia.org/wiki/Photograph
https://en.wikipedia.org/wiki/Two-dimensional_space
https://en.wikipedia.org/wiki/Physical_body
https://en.wikipedia.org/wiki/Depiction

Digital Image Representation

Cartesian Coordinates

v A digital image is an image f(x,y) that
has been discretized both in spatial
coordinates and in brightness.

v You may consider a digital image as a
matrix whose row and column indices
identify a point in the image and the
corresponding matrix element wvalue
identifies the gray level at that point.

v' The elements of such a digital array are
called image elements, picture elements

(pels), pixels.
v The discretized Dbrightness values | |170|238] 85 |255221| 0
. . |
usually belong to the following interval | |68 [138] 17 |170|119| 68
/ |' 221 0 |238|136| 0 |255
0<f(x,y)<G—1, | ?119 255| 85 |170|136|238
| -
where G =2",m=1,2,.. denotes the | |238] 17 | 221/ 88 |119|255
85 [170|119]221( 17 |136

number of gray levels.
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Relationship between Pixels

v" A pixel p at coordinates (x, y) has four horizontal and vertical neighbors
whose coordinates are given by

(X + 1)3’)' (X _ 113’)' (x,y + 1)! (x,y — 1)
v' This set of pixels, called the 4-neighbors of p, is denoted by N, (p).

v" Each pixel is a unit distance from (x, y), and some of the neighbors of p lie
outside the digital image if (x, y) is on the border of the image.

v" The four diagonal neighbors of p have coordinates denoted by N, (p).
x+Ly+1),x+1L,y—1),x—-1,y+1),x—-1,y—-1)

v These points, together with the 4-neighbors, are called the 8-neighbors of p,
denoted by N8(p)

Effrosyni Doutsi | ADA-X
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Gray Scale Images

Lena Image
Original image here
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Lena Soderberg at ICIP Conference
in 2015
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https://datafireball.com/2016/09/24/lena-the-origin-about-the-de-facto-test-image/

Gray Scale Images

Effrosyni Doutsi | ADA-X

v Let I(i,j) wherei=1,..,Nand j=1,..,M be
a discretized grayscale image of 2™ different
gray levels.

v' The number of bits required to store a
digital image is given by

b= NXMXm.

v' A group of 8-bits is commonly called 1 Byte.
Thus, the number of Bytes required to store
a digital image is given by
NXMXm

B=—m

8

v' The resolution of an image is strongly
dependent on N,M,m . The higher these
parameters are increased, the closer the

digitized image will approximate the
original.
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Image Resolution

R506x:256 128x128 64x64

Original Grayscale
Image
513x512

32X3: 8x8

Effrosyni Doutsi | ADA-X 33



Colour Images

Red Channel

Green Channel Reconstructed
Color Image

L r+g+b=1 ]

Original Color
Image

Blue Channel
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Resolution of Colour Images

R56x256

Original Image
512x512

32X3:

Effrosyni Doutsi | ADA-X

128x128

8x8
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v The electromagnetic spectrum  covers
electromagnetic waves with frequencies
ranging from 1-102% Hz, corresponding to
wavelengths from 1000m to a fraction of the
size of an atomic nucleus (1 Angstrom = 1010
m=0.1 nm).

The frequency range is separated into bands;
beginning at the low frequency / long-
wavelength (radio, TV) wuntil the high
frequency / short wavelength (Gamma-rays).

y(x)

——

The wavelength of a sine wave.
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The Visual System

VISUAL

SYSTEM

Effrosyni Doutsi | ADA-X
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The Visual System

VISION

v' Begins in the eye which receives the
inputs, in the form of light.

v' Finishes in the brain which interprets
those inputs and gives us the
information we need from the data we
receive.

Effrosyni Doutsi | ADA-X
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Example of the digital acquisition process

Illumination (energy)

A’/// l\ source

L

_— Output (digitized) image
, Imaging system

(Internal) image plane

Scene element
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Sampling (statistics)

Population

Effrosyni Doutsi | ADA-X

Sample
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Image Sampling

v' An image may be continuous with respect to the x- and y-coordinates, and also in amplitude.

v To convert it to digital form, we have to sample the function in both coordinates and in
amplitude.

v Digitizing the coordinate values is called sampling.

v Digitizing the amplitude values is called quantization.

Original Signal Analog Signal Digital Signal
Effrosyni Doutsi | ADA-X
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Image Sampling

We are interested in looking at the following questions:

v How many samples should be taken so that no information is lost in the sampling process?

v Under what sampling conditions a continuous image can be fully recovered from a set of

sampled values?

Original grayscale lllustrate the intensity
Image values of AB
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Ay Ak

LLLE e e
Sampling the
coordinate values

Quantization

l 0ooo 0ooo

goooa

0o 0
0o 0o
0 ]

oa

LLLCELE PPty
Digitize the
intensity values
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Examples

Ax = 0.1

Superimpose f(x), h(x) h(x) = f(x)s(x)
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Examples

1
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20

Input signal f(x)
Superimpose f(x), h(x)
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Examples
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Examples
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Superimpose f(x), h(x)
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Image Subsampling (256 gray levels)

512

1024
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Effect of Reducing the Spatial Resolution

62
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Aliasing

v' Functions whose area under the
curve is finite can be represented JAVAVAVAVAVAVAVAVAVAVAVAY
in terms of sines and cosines of FAVAVAVAVAVAN
various frequencies. TN\ 7N\

\ / .\

v' The sine/cosine component with \
the highest frequency determines \\\ / \
the highest “frequency content” of A A A A
the function. (v A

/ \Jn\ [\ W

v’ Suppose that this highest b\""ﬂ.\ [ ‘“\'ﬁ‘u‘

frequency is finite and that the \ ‘,.-",ij*\‘,f ',.

function is of unlimited duration
(these functions are called band-
limited functions).

Fourier J., “The Analytic Theory of Heat,” (1807).
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Aliasing

Nyquist - Shannon Sampling (A) 8 o B
Oversampling

Th EOrem Lowpass Filter
v If the function is sampled at a rate A ‘{
equal to or greater than twice its . B 1

1

. . . . p |
highest frequency, it is possible to Bl iRl - T f-B 4 f+B

recover completely the original
function from its samples.

(B) : Foldi fr N ist limit
Perfect Sampling olding frequency/Nyquist limi

v If the function is undersampled,
then a phenomenon called aliasing

—-

l
y I

corrupts the sampled image.

e P R 7 —B 0 B £ f,+B
v’ The corruption is in the form of ~ Undersampling X.(f)
additional frequency components 'T
being introduced into the sampled
function. These are called aliased : :
frequencies. o P —lf -B —f,+B (l) Sfy—B B ; f,+B
(D)
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Image Quantization

v In order to form a digital image, the gray-

level wvalues also must be converted

(quantized) into discrete quantities.

v' The gray-level scale divided into L discrete

levels, ranging from black to white

v The continuous gray levels are quantized

simply by assigning one of the L discrete gray

levels to each sample.

v Due to processing, storage, and sampling

hardware considerations, the number of gray

levels typically is an integer power of 2:

L = 2k,

Effrosyni Doutsi | ADA-X



Number of storage bits

Nk 1(L=2 2(L=4 3(L=8 4@L=16) 5@L=32 6(L=64) 7T=128 8(L =256)
32 1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192
64 4,096 8,192 12,288 16,384 20,480 24,576 28,672 32,768

128 16,384 32,768 49,152 65,536 81,920 98,304 114,688 131,072

256 65,536 131,072 196,608 262,144 327,680 393,216 458,752 524,288

512 262,144 524288 786432 1,048,576  1310,720 1,572,864 1,835008 2,097,152

1024 1,048,576 2,097,152 3,145728  4,194304  5242.880 6,291,456 7340032 8,388,608

2048  4,194304 8,388,608 12582912 16777216 20,971,520 25165824 29,369,128 33,554,432

4096 16,777216 33,554,432 50331648 67,108,864 83,886,080 100,663296 117,440,512 134,217,728

8192 67,108,864 134217,728 201,326,592 268,435,456 335,544,320 402,653,184 469,762,048 536,870,912

N is the number of pixels

L is the number of the discrete intensity levels

Effrosyni Doutsi | ADA-X
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Effect of Reducing the Intensity Levels

256 levels 128 levels 64 levels
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32 levels
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Effect of Reducing the Intensity Levels

16 levels 8 levels 4 |evels
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Interpolation

1.0

Nearest Neighbor k(x) f(x)
Resampling »
0.5 05
Bilinear BN fx)
Resampling A »
-1.0 1.0
1.0
Li f(x)
Bicubic /\
Resampling g T =
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Linear Interpolation - Example

New entries 102030
1 2 3 O 0 0 0 0 O
11: ;]2: -
4 5 6 4 0 5 0 6 O
000000
Row Interpolation
(1 15 2 25 3 1.5] Column 1 15 2 25 3 15
0O 0 0 0 O Interpolation 25 3 35 4 45 225
>/, = >/, =
4 45 5 55 6 3 4 4.5 5 5.5 6 3
0 0 0 0 0 0] 2 225 25 275 3 15
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Linear Interpolation - Example

Row and Column Interpolation is equivalent to the convolution of the augmented matrix I, with the kernel H!!!!

/4 1/2 1/4
H=12 1 12—
1/4 12 1/4
(1 0 2 0 3 0] 1 15 2 25 3 15]
1 23 000O0O0O 25 3 35 4 45 225
17 ﬁ]: . > 1, =
{456} 1405060 14 45 5 55 6 3
0 00 00O 20225 25275 3 15
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Course Outline

v' Digital Image Fundamentals
v Image Acquisition

v’ Image Transforms

v' Convolution Theorem

v Morphological Operations

v Image Coding

Effrosyni Doutsi | ADA-X
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Image Enhancement

v' There is no general theory of image enhancement.

v' The principal objective of enhancement is to process an image so
that the result is more suitable than the original image for a
specific application!!

v Establishing new image enhancement techniques is very much
problem oriented e.g. a method which is quite wuseful for
enhancing X-ray images may not be necessary for satellite
images.

v The viewer is the ultimate assessor of how well an image
enhancement technique works.

Effrosyni Doutsi | ADA-X
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Image Enhancement Categories

v Spatial Domain

v' This term refers to the image plane itself.

v' Direct manipulations of pixels in an image.

v Frequency Domain

v Modifying the Fourier transform of an image.

Reminder: Joseph Fourier developed a theory by proving that

complicated but periodic functions can be written as the sum of
sines and cosines.

Effrosyni Doutsi | ADA-X
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Spatial Domain

v' It refers to the aggregate of pixels composing an image as most of
the methods are procedures that operate directly on these pixels.

v It is denoted by the following expression

gx,y) = T[f(x,y)],

where f(x,y) is the input image, g(x,y) is the new image and T is
an operator on f defined over some neighbourhood.

v In addition, T can operate on a set of input images, such as
performing the pixel-by-pixel sum of K images for noise reduction.
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Pixel Neighborhood

OriU 4

X

Fig. The 3x3 neighborhood of the pixel (x,y) in an 8x8 image.
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Pixel Neighborhood

X

Fig. The 3x3 neighborhood of the pixel (x,y) in an 8x8 image.
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ransformation function T

v' The simplest form of T is when the neighborhood is of size 1x1 (a
single pixel).

v' In this case, g depends only on the value of f at (x,y), and T becomes
a gray-level (also called an intensity or mapping) transformation
function of the form

s = T(r),

where, for simplicity in notation, r and s are variables denoting,
respectively, the gray level of f (x,y) and g(x,y) at any point (x, y).

Effrosyni Doutsi | ADA-X
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hresholding Function

This transformation produces an image of higher contrast than the
original by darkening the levels below a threshold wvalue m and
brightening the levels above the threshold in the original image. This

technique is known as contrast stretching.

s = T(r) s =
A
________ |
|
ot : 5
— T(r) :
|
|
e : =
X | =
A | A
|
! > 7 >
m
Dark Light Dark Light

Effrosyni Doutsi | ADA-X 85



Basic Transformations

There are & basic types of
functions used frequently for
image enhancement:

v linear (negative and identity
transformations),

v’ logarithmic (log and inverse-
log transformations),

v’ power-law (mth power and
nth root transformations).

Effrosyni Doutsi | ADA-X

3L /4

Output gray level, s
=
\9)

L/4

Negative

nth root

Log
nth power
Identity Inverse log
/'/l l
L/4 L2 3L/4 7 -1
Input gray level, r
86



Linear Transformation

The negative of an image with gray levels in the range [0,L — 1] is
obtained by using the negative transformation, which is given by the
expression

s=L—1-—-r.

(a) Original Image Mammography (b) Negative Image
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Logarithmic Transformation

The general form of the log transformation is

s = clogy(1 + 1),

where c is a constant, b is the base of the logarithm and it is assumed that r = 0.

(a) Fourier Spectrum (b) Log Transform of Fourier Spectrum
(r € [0,1.5x106]) (s €[0,6.2] forc =1)
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Power-law Transformation

v' The basic form of the power-

law transformation is given as
follows

s = c(r+¢),

where y and ¢ are positive
constants and ¢ is a small
quantity that satisfies that the
output exists even if the input
is zero.

v' This kind of transforms are

also known as Gamma
Transforms or Gamma
Correction.
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L -1

3L/4

Output gray level, s
h
\
\}

L/A

v = 0.04
v = 0.10
v =0.20 5
v =040
v = 0.67
y=1 ]
v =1.5
vy =25
v =150 ]
vy = 10.0
/ vy =25.0
| | | J
L/4 L/2 3L/4 L—-1
Input gray level, r
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Power-law

(a) Original MR Image of
Human Spine
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(b) Gamma Correction
y = 0.6

ransformationy <1

(c) Gamma Correction
y =04

(d) Gamma Correction
y = 0.3
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Power-law Transformation y > 1

(a) Original Aerial images. (b) Gamma Correction (c) Gamma Correction (d) Gamma Correction
y = 3.0 y = 4.0 y =50
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Piecewise-Linear

ADVANTAGES
piecewise

v The form  of

ransformation

functions can be arbitrarily

complex.

v’ Important functions can be
formulated only as piecewise

function.

TYPES
1. Contrast Stretching

2. Gray-level Slicing
3. Bit-place Slicing

DISADVANTAGES
v' They require considerably

more user input.
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Contrast Stretching

L-1 I I I
(r2752)
w 3L/4E i
)
>
2
= Lplk ~—T(r) -
o
5
o
=
O LiAE _
(1, 1)
0 | | |
0 L/4 L2 3L/A L -1

Input gray level, r

(a) Contrast Stretching
Function.
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(a) Low contrast.

ransformation

(b) Contrast Stretching.

(c) Thresholding.
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Gray-level Slicing Transformation

S e
s T P F |
| B ir | | | ir
0 A B L-1 0 A B L-1
(a) Highlight values in [A,B] (b) Highlight values in [A,B] (c) Input image. (d) Results of using the
and reduce all others. and preserve all others. Transform (a).

Effrosyni Doutsi | ADA-X 94



The histogram of an image with gray levels in range [0, L — 1] is a discrete
function h(r,) = ny, where 1y, is the k" gray level and ny, is the number of
pixels in the image having gray level ry,.

Histogram normalization -> dividing each of its values by the total number of
pixels in the image, denoted as N

p(ry) = %, fork=0,1,..,L—1.

In other words, p(73) gives the probability of occurrence of gray level ry.

The sum of all components of a normalized histogram is equal to 1.



Examples
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Histogram h(r)

Dark image

Intensities r
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Examples
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Histogram h(r)

Bright image

Intensities r
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Examples
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Histogram h(r)

]
4|l

Low-contrast image

Intensities r
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Examples
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Histogram h(r)

High-contrast image

Intensities r
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Histogram Equalization

v’ Every transformation is of the form s = T'(r) where
0 < r < 1 when the values have been normalized

v' We assume that the transformation function T(r)
satisfies the following conditions: o e

a) T(r) is single-valued and monotonically
increasing in the interval 0 <r <1 and

|
I
|
sp = T(ry) | T &T(F) :
|
b) 0<T(r)<l1lfor0<r<1. !
v' The inverse transformation from s to r requires that :
T(r) is a strictly monotonically increasing function : -
A C = r
and it is denoted 0 re 1

r=T"1(s)for0<s <1.
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Histogram Equalization

I'(r)
A

L-1j--———————————- |
Single | / :
value, s | A
T~/
|
Single | |
value, s, | IV :
|
!
|
|
|
|

[ — —— I >

0 Multiple Single L — 1

values

value

(a) Monotonically Increasing Function
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(b) Strickly Monotonically Increasing Function
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Histogram Equalization of a Dark Input

||||“ |M‘ |H H‘ ||“|MUII”
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Histogram Equalization of a Bright Input
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Histogram Equalization of a Low-Contrast Input
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"
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Histogram Equalization of a High-Contrast Input
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lllustration of a Histogram Equalization (1/2)

v' Assume a 3-bit image (L = 8 levels) of size 64X 64 pixels (MN = 4096).
v' Assume that the intensity levels are integers in the range [0,L — 1] = [0,7].

v We are given the following data:

I ny pr(r) = ny/MN
= (0 790 0.19
= = 1l 1023 0.25
S 850 0.21
S 656 0.16
ry, = 4 329 0.08
=5 245 0.06
S 122 0.03
=17 81 0.02
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lllustration of a Histogram Equalization (2/2)

(b) Transformation function. (c) Equalized Histogram.

(a) Original Histogram of an 3-bit image .

k
sk = T(re) = (L — 1) > p,(r)|

0

J

109
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Enhancement Using Arithmetic Operations

v Arithmetic operations involving images are performed on a
pixel-by-pixel basis between two or more images. E.g.
subtraction of two images results in a new image whose pixel at
coordinates (x,y) is the difference between the pixels in that
same location in the two images being subtracted.

v' The actual mechanics of implementing arithmetic operation
can be done sequentially, one pixel at a time, or in parallel,
where all operations are performed simultaneously.

v' The four arithmetic operations are: Addition, Subtraction,
Multiplication and Division.
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Image Subtraction

v' The difference Dbetween two
images f(x,y) and
h(x,y), expressed as

g(x,y) = f(x,y)- h(x,y) (a) Original Image (b) Setting the Four lower-

bit planes to zero
is obtained by computing the »

difference between all pairs of
corresponding pixels from f and
h.

v' The key usefulness of subtraction
is the enhancement of differences
between images.

(c) Difference (d) Histogram-equalized
between (a) and (b) difference image
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v’ Consider a noisy image g(x,y) formed by the addition of noise
h(x,y) to an original image f (x, y); that is,

gx,y) = f(x,y) + h(x,y)

where the assumption is that at every pair of coordinates (x,y) the
noise is un- correlated and has zero average value.

v Reminder: The variance of a random variable x with mean m is
defined as E[(x —m)?], where E{.}is the expected value of the
argument. The covariance of two random variables x; and x; is
defined as E|(x; — m;)(x;j —m;)|. If the variables are uncorrelated,
their covariance is O.



Image Averaging

v If the noise satisfies the constraints just stated, it can be shown that if an
image g(x,y) is formed by averaging K different noisy images,

K
1
gx,y) = Ez gi(x,y).
i=1

v' Then, it follows that

_ 1
E{gx,y)} = f(x,y) and 05y, = \/_Eo-ﬁ(XJ’)’

where E{g(x,y)} is the expected value of g, and 07, and g7, are
the variances of g and n, all at coordinated (x, y).
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Applications

(a) Original Image (b) Noisy Image
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Applications

| | | |

(a) Original Image (b) Averaging K = 8 Images (c) Difference between (d) Histogram of (c)
(a) and (b)
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Applications

| | |

(a) Original Image (b) Averaging K = 16 Images (c) Difference between (d) Histogram of (c)
(a) and (b)

Effrosyni Doutsi | ADA-X 116



Applications

(a) Original Image (b) Averaging K = 64 Images (c) Difference between (d) Histogram of (c)
(a) and (b)
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Applications

|

(a) Original Image (b) Averaging K = 128 Images (c) Difference between (d) Histogram of (c)
(a) and (b)

Effrosyni Doutsi | ADA-X 118



Spatial Filtering

v' Some neighborhood operations work with the values of the image
pixels in the neighborhood and the corresponding values of a
subimage that has the same dimensions as the neighborhood.

v' The subimage is called a filter, mask, kernel, template, or window:.

v' The values in a filter subimage are referred to as coefficients,
rather than pixels.

v' Spatial filtering is the filtering operations that are performed
directly on the pixels of an image.
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Spatial Filtering Mechanics
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Filtering Elements

Kernel g

Image [
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Position of the coefficie

g(_ll_l) g(_llo) g(_lll)
Kernel g
Image [
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NS

H I
: f(x-1,y-1) | f(x-1,y) | f(x-1,y+1) !
i i
L foy-1) |ofbey) | fooy+1) )
; ;
1 f(x+1,y-1) | f(x+1,y) | f(x+1,y+1) 1
" I
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2D Correlation

f(x-1,y-1) I} f(x-1,y) [¥f(x-1,y+1) 1
g(-1-1) || &-10) || e-11) i
f(x,y-1) iooy) || f(xy+1) |
g(-1,0) g(0,0) g(0,1) 1
f(x+1,y-1) I| f(x+1,y) Hf(x+1,y+1) :
g1,-1) |l g0 || 811

h=gof= g-L-Dflx =Ly - D+g(=L0)f(x — Ly) + -

+90,0)f(C,y)+- +9(@1,0)f(x + L,y) +g(1,Df(x + 1L,y + 1).
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v" Correlation is the mathematical operation on two functions f, g that produces a third
function h.

v" This new function expresses how the shape of function f is modified by the shape of
function g. Correlation is denoted as follows:

h:fog

v' The mathematical 2D discrete correlation is given by:

+00 400
Ry = ) > g@NfG+iy+)),
[=—00 j=—00

where f represents the input image to be correlated with the kernel g resulting in a new
output image h. The indices x,y are concerned with the image matrices and the indices
[, J deal with that of the kernel. If the size of the kernel involved in correlation is NXN
then the indices i, j will range from | =N /2| to [N/2]| where N is usually an odd number.



Numerical Example

h= gof =1x21+2X1+ 1X18 +2X14 +4X19 + 2X3 + 1X16 + 2x4 + 1x17 = 192.
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Kernel

12913 2| 3 |[20]f 17|26
24133 |32 7 |9 |10] 4] 2
14 110 2 :-ZI---l---IS-: 22 | 21
1517 | 4 : 14 119 | 3 : 10 | 13
16 (14| 8 t16|a|17838]7
1262|3336
24110 | 3 | 9 |11 28|21 ] 10
331 219 7 10226 |25
Image
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2D Convolution

i x+11y1]) ﬂéﬂl’ﬁ) f(x+ 1y+f))

h=gxf= gL Df(x- Ly—-1D+g(1L0)f(x— Ly)+

+90,0)f(C,y)+ +g(-1L,0)f(x+ L,y)+g(-1,—-Df(x+ 1,y + 1).
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v Convolution is the mathematical operation on two functions f, g that produces a,
third function h.

v This new function expresses how the shape of function f is modified by the
shape of function g. Convolution is denoted as follows:

h=fx*g

v' The mathematical D discrete convolution is given by:

Ry = ) > g@Nf—iy -,
[=—00 j=—00

where f represents the input image to be convolved with the kernel g resulting
in a new output image h. The indices x, y are concerned with the image matrices
and the indices i, j deal with that of the kernel. If the size of the kernel involved
in convolution is NXN then the indices i,j will range from |-N/2| to |N/2] where
N is usually an odd number.



Numerical Examples

h= gx*f=1X174+2X4+1X16 + 2X3 +4%x19 + 2X14 + 1x18 + 2Xx1 + 1x21 = 192.
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Kernel

12913 2| 3 |[20]f 17|26
24133 |32 7 |9 |10] 4] 2
14 110 2 :-ZI---l---IS-: 22 | 21
1517 | 4 : 14 119 | 3 : 10 | 13
16 (14| 8 t16|a|17838]7
1262|3336
24110 | 3 | 9 |11 28|21 ] 10
331 219 7 10226 |25
Image
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2D Convolution

Vv
h(wy) = g < fa = Y Y gaNf—iy—)),
[=—00 j=—00
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Boundary Conditions

<[s]x
N BN B
<]«

&

XXX
N EN EN
N EN

Padding Approaches

v Zero

v Symmetric VIiVv]X
v Circular Vv ] x
v’ Replicate x| x
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Solution — Padding for a 3x3 kernel

|
i
- -y

---1---1'---|r---|----|---1
|

|
|
--ﬂ

Ilql
1
1

B R B I A B B
1 1 1 1 1 1

1
1
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Solution — Padding for a 5x5 kernel

---I---1---1'---:----'----'---1
|
|

“.--_q--4_--.“--.“---“.-4--1-1--“.--_
R
_" | | | | | | | | ml
-

IIImlll
| | | Illml
S S S L
-
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Zero padding

0
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Replicate padding
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Symmetric padding
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Lowpass Filters

v' The response f a smoothing, linear
spatial filter is simply the average of
the pixels contained in the
neighborhood of the filter mask.

v' These filters sometimes are called
averaging filters.

v' By replacing the value of every pixel in
an image by the average of the gray
levels in the neighbor- hood

v this process results in an image with
reduced “sharp” transitions in gray
levels.

Effrosyni Doutsi | ADA-X

O =

Gaussian Filter
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Applications

v' Nloise: The most obvious application of smoothing is noise reduction,
because random noise typically consists of sharp transitions in gray
levels.

v Bdges: The sharp transitions in gray levels characterize the edges
which almost always are desirable features of an image), so averaging
filters have the undesirable side effect that they blur edges.

v' Contours: The smoothing of false contours that result from using an
insufficient number of gray levels.
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Standard Average Filter

1 1
1
= X
9 1 1
1 1
Mean Filter
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v The standard average filter can best be seen by
substituting the coefficients of the mask.

9
1
R=35),7
=1

which is the average of the gray levels of the
pixels in the 3X3 neighborhood defined by the
mask.

v An mxn mask would have a normalizing constant
equal to *

mn

v’ A spatial averaging filter in which all coefficients
are equal is sometimes called a box filter.
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Weighted Average Filter

v This terminology is used to indicate that pixels
are multiplied by different coefficients, thus
giving more importance (weight) to some pixels

1 2 1 at the expense of others.

v The basic strategy is simply an attempt to
TR 4 2 reduce blurring in the smoothing process as
follows

v the center point is weighted by the highest
value

Gaussian Filter
v’ the value of the coefficients as a function of
increasing distance from the origin.
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Gaussian Filter

%10 s . . : |
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Gaussian 64x64 with o = 10. Gaussian 64x64 with o = 4.

Glz) = 27302 exp( H;:L ).
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1st Example (1/2)

A -
! 5 I
-~ - .
S 4 ’
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e

aaaaaaadd

(a) Original
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(b) Average Filtern=3

od
il

aaaaaadaad

(c) Average Filtern=5
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15t Example (2/2)

wd  |ed
([T AT

saaaaaad TTII TR N

(d) Average Filtern=9 (e) Average Filter n =15 (f) Average Filter n =35
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2"d Example

(a) Original NASA image (b) Average Filter 15x15 (c) Thresholding
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v' Order-statistics filters are nonlinear spatial filters whose response
is based on

v ordering (ranking) the pixels contained in the image area
encompassed by the filter,

v replacing the value of the center pixel with the value determined
by the ranking result.

v' The best-known example in this category is the median filter.

v’ Median filters provide excellent noise-reduction capabilities, with
considerably less blurring than linear smoothing filters of similar
size, the presence of impulse noise, also called salt-and-pepper noise



Median Filter
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Example
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(@) X-ray image with salt
and pepper noise.

0 e

(c) Median Filter 3x3
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Min Filter

10

1
I 22

18

38

17

36

21

31

28

1

11

a

32

1
I 21

2

16

33

10

14

25

10

10

22

18

38

17

36

21

31

28

19

11

17

16

19

14

18

21

32

16

33

14

25

10

150

Effrosyni Doutsi | ADA-X



Max Filter
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v' The principal objective of sharpening is to highlight fine details in
an image or to enhance detail that has been blurred, The principal
objective of sharpening is to highlight fine detail in an image or to
enhance detail that has been blurred.

v' Sharpening could be accomplished by spatial differentiation

v The strength of the response of a derivative operator is
proportional to the degree of discontinuity of the image at the point
at which the operator is applied.

v Image differentiation enhances edges and other discontinuities
(such as noise) and deemphasizes areas with slowly varying gray-
level values.



Sharpening Spatial Filters

v' A basic definition of the first-order derivative of a, one-dimensional
function f(x) is the difference

of ]
— = fx+ 1)~ f().

v Similarly, we define a second-order derivative as the difference

of
— = fx + D+ fx — D - 2f(®).
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Example

p--o--0--0

-~ -

°--0--0--9

,\
4
4

[ ]
s,

7

-«

Thin line ~
&- —X— -o

.— Isolated point
Image strip | 5|54 (3|2(1(0]|0[{0]|6]0|0|0(0|1|3|1|0(0|0({O0|7|7|7|7

' Flat segment

L

- o
-~
- o
-

o--0--¢

oWV NN~ O

oryoid [9A9] AvID)

First Derivative —1—-1—-1-—1

Second Derivative —1 0 0 0
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Second Derivatives for Enhancement

v' The approach basically consists of defining a discrete formulation of
the second-order derivative and then constructing a filter mask
based on that formulation.

v We are interested in Iisotropic filters, whose response is
independent of the direction of the discontinuities in the image to

which the filter is applied.

v Isotropic filters are rotation invariant, in the sense that rotating
the image and then applying the filter gives the same result as
applying the filter to the image first and then rotating the result.
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v' the Laplacian is the simplest isotropic derivative operator, which, for a
function (image) f (x, y) of two variables, is defined as

%f 0°f
VAf =
f 0x? * dy?
v' The partial second-order derivative in the x-direction and y-direction :
d%f
5z~ JEFLY)+flx—-1y)=-2f(0y)
d%f
a_yz — f(x'y + 1) +f(x'y o 1) o 2f(x,y)

v' The digital implementation of the two-dimensional Laplacian is obtained by
summing these two components:

VE=[fx+ 1L+ flx—1Ly)—2f(x,y)+flr,y+ D+ flx,y — 1) — 2f(x,y)]



0 1 0 1 0 -1 0 -1 -1 -1
1 —4 1 —8 -1 . -1 -1 8 -1
0 1 0 1 0 —1 0 -1 -1 -1

(a) Laplacian mask
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(b) Extension of (a)
that include diagonal

neighbors

(c) Other Laplacian mask

(d) Extension of (c)
that include diagonal
neighbors
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(a) Original NASA image (b) Laplacian Filtered (c) Laplacian scaled (d) Image enhanced
Image filtered image



Edge detection filters

0 0 -1 -1 0 1 -1 0 1 -1 0 1
0 1 0 -1 0 1 -2 0 2 -2 0 2
0 0 0 -1 0 1 -1 0 1 -1 0 1
(a) Roberts columns (b) Prewitt columns (c) Sobel columns (d) Robinson columns
-1 0 0 1 1 1 1 2 1 1 2 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 -1 -1 -1 -2 -1 -1 -2 -1
(a) Roberts rows (b) Prewitt rows (c) Sobel rows (d) Robinson rows
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Convolution with Sobel row
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Applications: Feature Extraction
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Course Outline

v
v
v
v' Convolution Theorem
v

v
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Fourier Transform

v' The Fourier Transform of a continuous function f(t) of a continuous
variable t denoted as J{f(t)} is defined by

+ 00 + 00

3{f()} = f©e 9 dt = f(©)e Izt g,

— 00 — 00

where 0 = 2mu is the angle and u is the frequency.
v' The Fourier Transform is a function of frequency J3{f(t)} = F(u)

v' Using the Euler’s formula the Fourier Transform can be also written as

+ 00

F(u) = f(t)[cos(2mut) — j sin(2mut)] dt

— 00
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Inverse Fourier Transform

v' The Inverse Fourier Transform of a continuous function f(t) of a
continuous variable t denoted is defined as

+00

D) = SLUF)) = j F(u)e o dy = f F(uyel2mt dy,

— O

where 0 = 2mu is the angle and u is the frequency.

v' The Fourier Transform and the inverse Fourier Transform are so-
called Fourier transform pair.

v' We also call the Fourier Domain as Frequency Domain because the
only variable left after the integration is frequency.
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Convolution Theorem

v' The convolution in space domain between two continuous function f(t)
and h(t) of one continuous variable t is analogous to multiplication in
frequency domain of the Fourier Transform of these functions

f(@) * h(t) & F)H(W

v In addition the convolution in frequency domain equals the
multiplication in the spatial domain

F(u) *H(w) < f(h(t)

NOTE! The double arrow is used to indicate the the expression on the right is obtained by
taking the Fourier Transform of the expression on the left, while the expression on the
left is obtained by taking the inverse Fourier transform of the expression on the right.
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» Smoothing (blurring) is achieved in the frequency domain by
high-frequency attenuation; by low pass filtering

>

>

The Ideal filter is a very sharp filtering
The Gaussian filteris a very smooth filtering
And the Butterworth filtering has a parameter called the

filter order. It approaches the ideal filter for high order
values and the Gaussian filter for low order values.



Ideal Lowpass Filter

Ideal Lowpass Filter
illustrated as an image

D,

Filter radial cross section.

> D (u, v)



> A 2D lowpass filter that passes without attenuation all
frequencies within a circle of radius Dy from the origin and “cuts
off” all frequencies outside this circle is called an ideal lowpass
filter (ILPF)

(1 if D(u,v) < D,
i, ) = {O if D(u,v) > D,

where D, is a positive constant and D(u,v) is the distance
between a point (u, v) in the frequency domain and the center
of the frequency rectangle

D(w,v) = [(u—P/2)*+ (v — Q/2)*]*/2



Example

o200 Tty &

aaaaaaad

Original Image

ed
T

otaauﬂ_ﬂa

Cut-off frequency 10

ST

Cut-off frequency 60
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..@.a
T

aaaaaad a a
Cut-off frequency 160

Cut-off frequency 30

L
11111

aaaaaad a
Cut-off frequency 460
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Butterworth Lowpass Filterin

=V 1.0

0.5

Butterworth Lowpass Filter Butterworth Lowpass Filter
illustrated as an image
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A

H(u, v

Dy

Filter radial cross section.
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> A transfer function of a Butterworth lowpass filter
(BLPF) of order n and with cutoff frequency at a
distance D, from the origin is defined as

1

Au,v) = D(u,v)
1+ |2 p)

2n

where D (u,v) is given by

D(w,v) = [(u—P/2)*+ (v — Q/2)]*/?



Example

od
[HTH11]

aaaaaaadd

Original Image

54 )
I

.aaaaaaa

Cut-off frequency 10

e d
i

s a2

Cut-off frequency 60
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a
HHTHE

aaaaaad a a
Cut-off frequency 160

Cut-off frequency 30

od
[T

aaaaaaadd

Cut-off frequency 460

182



Gaussian Lowpass Filtering

H(u, v) H(u, v)

—v 10

0.667

Gaussian Lowpass Filter Gaussian Lowpass Filter Filter radial cross section.
illustrated as an image
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» A transfer function of a Gaussian lowpass filter
(GLPF) in two dimensions is given by

H(u’ v) —e —D?(u,v)/2D§

where D, is the cutoff frequency. When D(u,v) = D, the
GLPF is down to 0.607 of its maximum value.



Example

ceammE
i_‘f-‘ BRI S LR

i

.

aaaaaaadd

Original Image

(L |
[T

aaaaaaaa

Cut-off frequency 60
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Cut-off frequency 10

a
T

aaaaad a a
Cut-off frequency 160

o
U
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Cut-off frequency 30

. d
[T

aaaaaad a
Cut-off frequency 460
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ldeal Highpass Filtering

Ideal Highpass Filter
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Ideal Highpass Filter
illustrated as an image

H(u, v)

V1.0

A

Filter radial cross section.

- D(u, v)
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> A 2D highpass filter that passes without attenuation all
frequencies outside a circle of radius D, from the origin
and “cuts off” all frequencies inside this circle is called an
ideal highpass filter (IHPF)

{0 if D(u,v) < Dy
il ) = {1 if D(u,v) > D,

where D, is a positive constant and D (u,v) is the distance

between a point (u,v) in the frequency domain and the
center of the frequency rectangle

D(u,v) = [(u—P/2)*+ (v — Q/2)]*"/?



Ideal Highpass Filter with Ideal Highpass Filter with Ideal Highpass Filter with
Dy = 30 Dy = 60 D, = 160
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Butterworth Highpass Filtering

H(u, v)

Butterworth highpass Butterworth highpass
Filter Filter illustrated as an
image
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H(u, v)

V1.0

A

|

Filter radial cross section.
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» A transfer function of a Butterworth highpass filter
(BHPYF) of order n and with cutoff frequency at a distance
D, from the origin is defined as

1

2n
1+ [DO/ D(u, v)]

where D (u,v) is given by

H(u,v) =

D(w,v) = [(u—P/2)* + (v — Q/2)*]*/2



Example

Butterworth Highpass Butterworth Highpass Butterworth Highpass
Filter with D, = 30 Filter with Dy = 60 Filter with Dy = 160
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Gaussian Highpass Filtering

u
H(u, v)
A
—v 1.01
| > D(u, v)
u
Gaussian Highpass Filter Gaussian Highpass Filter Filter radial cross section.

illustrated as an image
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Example

Gaussian Highpass Filter Gaussian Highpass Filter Gaussian Highpass Filter
with D, = 30 with Dy = 60 with D, = 160
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» A transfer function of a Gaussian highpass filter (GHPF)
in two dimensions is given by

H(u,v) = 1 — e~D*@v)/2Dg

where D, is the cutoff frequency.



Course Outline

v

v

v Morphological Operations

v

v
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v The work morphology commonly denotes a branch of biology
that deals with the form and structure of animals and plants.

v Mathematical Morphology is a tool that enables the extraction
of image components that are useful in the representation and
description of region shapes such as boundaries, skeletons and
convex hull.

v Morphological techniques might be pre- or post-processing i.e.
filtering, thinning and pruning.

v' The input of a morphological method is an image and the output
might be either an image or some useful attributes extracted
from the input images.



Reminder

v A set is a collection of objects, which are the elements of the set.
v If S is a set and x is an element of S, we write x € S.
v' If x is not an element of S, we write x & S.

v A set can have no elements, in which case it is called the empty
set, denoted be 0.

v If S contains a finite number of elements, say x4, x», ..., x,,, We write
it as a list of the elements, in braces:

S =1{x1,%x, .., Xn}
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v If § contains infinitely many elements xq,x,,..., which can be
enumerated in a list, we say that S countably infinite and we
write

S = {xl, X2, }

v Alternatively, we an consider the set of all x that have a certain
property P and denote it by

{x|x satisfies P}
v A set of all scalars x in the interval [0,1] can be written as {x|0 <

x < 1}. The elements of this set cannot be written down in a list;
such a set is said to be uncountable.



The complement of a set S with respect to the universe (), is the set of all
elements of () that do not belong to S and is denoted as S¢.

{xeQ|x ¢S}

The union of two sets S and T is the set of all elements that belong to S or
T (or both), and is denoted by SUT.

SUT{x€eSorx €T}

The intersection of two sets S and T is the set of all elements that belong
toboth S and T, and it is denoted by SN T.

SNT{x e Sand x € T}

Two sets are said to be disjoint if their intersection is empty. In other
words, two sets are called disjoint if no two of them have a commmon
element.



Examples

SNT SUT SUT*®

SRIoN
& ©

T c S and the shaded region is T,S, U are disjoint T,S, U are the partition of Q
The compliment of §
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Basic Set Definitions

v Reflection of a set B, denoted as
B, is defined as

B = {w|w = —b,for b € B}.

>

If B is the set of pixels (2D
points) representing an object in
an image, then B is simply the
set of points in B whose (x,y)
coordinates have been replaced

by (—x,—y).
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Basic Set Definitions

v Translation of a set B, denoted
as (B),, is defined as

(B),={w|w =b + z,for b € B}.

v If B is the set of pixels (2D
points) representing an object in
an image, then (B), is simply the
set of points in B whose (x,y)
coordinates have been replaced
by (x + 2z, y + z5).
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Structuring Elements (SEs)

v Set reflection and translation are
employed extensively in morphology to
formulate operations based on
structural elements (SEs).

v’ Structuring Elements are small sets or
sub-images used to probe an image ° ° ° °
under study for properties of interest.

v' Structural Elements might have several
different shapes, such as square, line,
diamond, ball, disk, ect.

v' The origin of a structuring element also
must be specified (black dot).

Examples of structuring elements.
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Structuring Elements (SEs)

v In image processing it is
required that structuring
elements be rectangular
arrays.

v This is accomplished by
appending the smallest
possible number of
background.

Structuring elements converted to
rectangular arrays.
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Example :
Step 2:
0N :
Structuring
Element
Step 1: A set
v Suppose that we are interested P
in creating a new set by running
a set B over a set A so that the
0 0 0 ° .
origin of B visits every element
of A. :
Step 4: The structuring
v At each location of the origin of Step 3: The set padded with element as 2

B, if B is completely in A then background elements. rectangular array.

the pixel is shaded otherwise it
is not shaded.

v' The result is that the boundary
of the initial set is eroded.

Step 5: Set proposed by the structuring
element.
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Erosion and Dilation

v The most fundamental morphological
operations are called erosion and
dilation.

v Erosion: is an operation that usually
uses a structuring element for probing
and reducing the shapes contained in
the input image.

v Dilation: is an operation that usually
uses a structuring element for probing

and expanding the shapes contained in
the input image.

v Erosion # Dilation

Effrosyni Doutsi | ADA-X

Erosion of the dark-blue

square by a disk.

(U /

Dilation of the dark-blue

square by a disk.
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Erosion

v If we consider two sets A and B in Z?, the erosion of A
by B, denoted A © B is defined as

AOB = {Zl(B)z C A}

v The above equation indicates that the erosion of A by B
is the set of all points z such that B, translated by z, is
contained in A.

v The erosion can be expressed also in the following form:
AOS B ={z|(B), nA¢ = @}

where A¢ is the complement of Aand @ is the empty
set.
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Erosion of the dark-blue
square by a disk.
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Examples of Erosion

d/4
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d /4

d /4

a5 344 4
d)2
Nog 072
T
d/8 d/8
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Examples of Erosion

yd AN
) .
/ N
/ \
Y \
/ \
Y \
/ \
\

Input Image. Erosion using a 11x11 Erosion using a 15x15 Erosion using a 45x45
square. square. square.
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Dilation

v If we consider to sets A and B in Z?, the dilation of A
by B, denoted A@B is defined as

A®B ={z|(B), n A # 0}
v The above equation indicates that the dilation of A

by B is the set of all points z such that B and A
overlap by at least for one element.

v The dilation can be expressed also in the following
form:

A®B ={z|[(B)_ nA] c A}
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Dilation of the dark-blue

square by a disk.
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Examples of Dilation

d

A®B
[ d [
d/8 d/8

d)2
d/4

d/2
ABB
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Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the

company's sgftware may
recognize a date using "00°
as 1900 rather than the vEZ
2000,

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using 00"
as 1900 rather than the year




v Erosion and dilation are duals of each other with respect to set

complementation and reflection. That is
(AGB) = A°DB

(A@B) = A°OB

v Erosion of A by B is the complement of the dilation of A° by
B, and vice versa.

v The duality is a very useful property particularly when the
structuring element is symmetric with respect to its origin, so

that B = B.



Opening and Closing

v Opening: is an operation that

generally smoothes the contour of an .

object, breaks narrow isthmuses and L J

eliminated thin protrusions. Opening of the dark-blue
square by a disk.

v Closing: is an operation that also tends
to smooth sections of contours, but as
apposed to opening, it generally fuses
narrow breaks and long thin gulfs,
eliminated small holes and fills gaps in
the contour.

Closing of the dark-blue
square by a disk.

Effrosyni Doutsi | ADA-X 214



Opening

v The opening A by B is the erosion of A by
B, followed by a dilation of the result by B

A°B=(AOB)®

v The opening can be also expressed as a
fitting process such as

ao8=| Ji®).I®), ca)

where U{.} denoted the union of all the
sets inside the braces.
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Opening of the dark-blue
square by a disk.
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Examples of Opening

A°B = U{(B)IB), C A

Translates of Bin A

@
@ -
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Closing

v The closing of set A by the structuring
element B is the dilation of A by B,
followed by an erosion of the result by B

A-B=(A ®B)OB

v' The closing is dual of opening thus a point
w is an element of closing if and only if

A-B=(B), NA +0

where U{.} denoted the union of all the
sets inside the braces.
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Closing of the dark-blue
square by a disk.
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Examples of Opening

A‘B—\
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Morphological Operations vs Spatial Transforms

v Morphological operations can be used to construct filters
similar in concept to the spatial filters related to:

v Image denoising
v BEdge detection

v Noise and its effects can be eliminated if we apply for example
the opening followed by the closing operation.

v Bdges can be detected if we apply the dilation operation, then

we apply the erosion operation and then we compute the
difference of these to results.
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Example: Image denoising (Step 1)

11111 AOSB

\\\\ \

\\\\\\‘\‘\N‘
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Example: Image denoising (Step 2)

(AOBY®B=A°B

221
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Example: Image denoising (Step 3)

222
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Example: Image denoising (Step 4)

223
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Course Outline

v' Multiresolution Analysis

v
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Multiresolution Analysis

» In 1950s a novel transformation, called wavelet transform, was
introduced as an alternative of the Fourier transform.

» Unlike the Fourier Transform, whose basis functions are sinusoids,
wavelet transforms are based on small waves, called wavelets, of
varying frequency and limited duration.

> In 1987, wavelets were first shown to be the foundation of a powerful
new approach to signal processing and analysis, called multiresolution
theory (Mallat 1987).

> Multiresolution Advantages: Features that might be undetected at one
resolution may be easy to detect at another.
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Image Pyramids (Burt and Adelson, 1983)

> Pyramids are powerful, vyet
conceptually simple structure for A
\
representing images at more than 1 1 g Level 0 (apex)

. ’ \ Levell
one resolution. 2X2 LT

. . . . 4><4// S Level 2
» Base level | is of size 2/x 2/ or / N
/ o

NXN /// l' |l \\\ .

> Top level 0 is of size 29% 29 or 1x1. N2XNJL/ \Level/ - 1

»> The pyramid is composed of | + 1 N><N/// '\ Level J (base)
resolution levels from 2/x 2/ to
20x 20

Effrosyni Doutsi | ADA-X 226



Laplacian Pyramid Algorithm

> Step 1: Filter and
downsample by a factor of 2

the level J input image. o /N Level 0 apex)
> Step 2: Upsample and filter )5y S Level 1
the generated approximation ixa/ N\ Level2
in step 1 generating an image /<;>\\ ",
of the same dimensions as the / x N

\\ Level J -1

level J input image. N/2 X N/2///

> Step 3: Compute the NN/ \ LevelJ (base)

difference between the
prediction image of step 2 and
the input to step 1.
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Example_
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Example

Gaussian Laplacian
Pyramid Pyramid
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Why Wavelets are important?

Fourier Transform

frequency
frequency

time

Fourier Transform

* High frequency resolution
* Uncertainty of the exact
time

Time-series
* High temporal resolution
* Uncertainty in the frequency
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Why Wavelets are important?

Spectrogram / Gabor filter

frequency

time

Spectrogram
e A grid of equally weighted
time and frequency
*  We know when specific
frequencies exist in time
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Multiresolution Analysis /

frequency

Wavelets

time

Wavelets
* Multiple scales in time
and frequency
e Hierarchical grading of
time and frequency
information

231



What does the Wavelet look like?

» There is a mother wavelet 1 (t)

> From this mother wavelet we derive all the smaller wavelets

bas(® = = ()

> a is the scale parameter

> b is the translation parameter
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Different scales

Large values of a

\

Expanded wavelet - Low frequency
components with bad time
resolution
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Small values of a
I /
(|

Shrunken Wavelet - High frequency
components with good time
resolution
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Different Wavelet types

¥

1.5

Daubechies

1
0.5
0
-0.5

0

¥ (1)
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2 3 4 5 6

Symlets

t

1.5}

1|
0.5¢
0
-0.5}
A |
1.5

0
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Introduction to Haar Transform

> Haar Transforrm is the oldest and simplest known
orthonormal wavelets.

> Haar Transform is expressed in the following matrix form
T =HFH"

where F is an NXN image matrix, H is an NXN Haar
transformation matrix and T is the resulting N XN transform.

H is not symmetric thus we need to compute its transpose
HT.
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Haar Wavelet
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2D 4-band filter bank

Step 1
f(m,n) @—

* ho(n)

2]

—@ a(m,n)

Columns
(along n)

* hy(n)

2!

e d"(m,n)

Columns

* ho(n)

21

@ d(m,n)

Rows
(along m)
Rows

Columns

* hy(n)

21

@ d°(m,n)
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2D 4-band fi

f(m,n) @—
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Iter bank
* hy(n) 2] —ea(m,n)
Columns
* hy(m) 2l (along n)
Rows
(along m) * hy(n) 2| ——ed"(m,n)
Columns
* hy(n) 2l ——e d"(m,n)
Columns
Rows
* hy(n) 2l —e@ dD(m,n)
Columns

Step 2.1
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2D 4-band filter bank

f(m,n) @—
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* hy(n) 2] —ea(m,n)
Columns
* hy(m) 2l (along n)
Rows
(along m) * hy(n) 2| ——ed"(m,n)
Columns
* hy(n) 2l ——e d"(m,n)
Columns
Rows
* hy(n) 2l —e dD(m,n)
Columns

Step 2.2
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HH
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2D Haar Filter - 2 Levels - Example
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2D Haar Filter - 3 Levels - Example
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Course Outline

v

v’ Image Coding
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Image Compression

+» Basier in processing

¢ Suited for audio and video

s Low cost

¢ Less bandwidth

s Accurate representation of a

sound
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\ﬁ

> Easily compressed

*» Less expensive and more
common equipment

s Multiple editing tools

*» Easy to transmit over networks
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Image Compression

s Low quality signals
+* Cables are sensitive

¢ Difficult to synchronize

analog signals
s Limitations in editing

+» Data can be corrupted
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-

s Sampling/quantization might
cause loss of information

** A/D and D/A demand mixed-
signal hardware

** Requires great bandwidth

¢ Systems/processing is more

complex
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Digital Images

512
| A \ Example

> Image with 256 different gray levels

,, » The range of these scales is between O
(black) and 255 (white).

> KEach level is represented by 8 binary
elements (O or 1) = 8bits/pixel.

i.e. 00000101 =7

- ' 0x27 + 0%2° + 0x2° + 0x2% + 0x23
262.144 pixels +1x22+0x21+1%x2°=4+1=5

512
A

2.097.152 bits!!
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Color Digital Images

512
A

512
A

—

3 * 262.144 pixels
6.291.456 bits!!
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Image Resolution

~ 99 MBytes!!

[

e [ * B UHD-2(8K)

—
e ——

-
__—,‘:'
-

3840x2160 3840 UHD (4K) T\ _‘ ‘

1920x1080 Full-HD (2K)

1280%720 HD
640%480

SD
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Video Framerate
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1 second of an 8K video with
12 frames per second (fps)
costs 1GBytes!!

60 frames / sec

30 frames / sec

24 frames / sec

12 frames / sec



+ Let r, a discrete random variable in the interval [0, L —
1] which is used to represent the intensities of an M XN
image

&

L)

» Bach variable occurs with probability p, (1) such that

Ny
pr(rk) = m for k = 0,1,2,3,..,L —1

where L is the number of intensity values and n, the
number of times the k-th intensity appears in the
image.



<+ Let [(r,) the number of bits used to represent each
value ri, then the average number of bits required to
represent each pixels is

L-1
Lavg — 2 L(rie)or (T7)
k=0

<+ The total number of bits required to represent an MxXN
image 1s

Liotar = MNLavg



<+ Given a source of statistically independent random
events form a discrete set of possible events
{r, o, ., 11} with associated probabilities
ip(r),p(ry),..,Pry)} , the average information per
source output, called entropy of the source, is

L-1
H= - 2 p(1y) log p(7i)
k=0



Example

Iy pA(re) Code 1 l;(ry) Code 2 I(ry)
rg7 = 87 0.25 01010111 8
rig = 128 0.47 10000000 8
rigg = 186 0.25 11000100 8
ryss = 255 0.03 11111111 8
re for k # 87,128, 186,255 0 — 8

Code 1: L,y = 0.25%8 + 0.47%8 + 0.25%8 + 0.03%X8 = 8 bits /pixel

Shannon:
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H = —{0.2510g 0.25 + 0.47 log 0.47 + 0.25log 0.25 + 0.03 log 0.03]

= 1.6614 bits/pixel
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Shannon 1t Theorem

< Shannon’s first theorem also called noiseless coding
theorem assures that a source can be represented by
the minimum number of bits.

Lavg,n

lim = H

n—00 n
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< If data contain irrelevant of repeated information are
said to be redundant

R—11
- C

where C is called compression ratio and it is defined as
€=z

< If C = 10 then there is a 90% of redundancy.



Example

Iy pA(re) Code 1 l;(ry) Code 2 I(ry)
rg7 = 87 0.25 01010111 8 01 2
rig = 128 0.47 10000000 8 1 1
rigg = 186 0.25 11000100 8 000 3
Frss = 255 0.03 11111111 8 001 3
re for k # 87,128, 186,255 0 — 8 - 0

Code 1: L,y = 0.25X8 + 0.47X8 + 0.25X8 + 0.03X8 = 8 bits

Code 2: L;y,; = 0.25X2 + 0.47%1 + 0.25%3 + 0.03%x3 = 1.81 bits

B 256X256X%X8 B 8

118.621  1.81
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R =

4.42

1
1——==0.774

256



<+ Objective: Transmission of big data (files, images,
videos, etc.)

<+ Applications:

» Data base

> Videoconference

> Transmission of interactive videos

> Telemedicine

> High Definition TV (HDTV)

>

Digital Cinema,



... through networks

<+ Internet
(text files, images, sounds, video, etc.)

<+ Telephone
(digital voice, etc.)
<+ OSatellites
(space probes, high definition television, etc.)

<+ Radio-mobiles
(34 generation GSM, UMTS, GSM, etc.)



... t0o support different types

* Hard-disks, floppy disks (files)
<« CD (sound, images)

<« DVD (videos)

<+ BLUE RAY (&2 hours of HDTV)

» USB key (files, sound, video, images)



<+ Real Time
<+ Telephone, video
(Rapid compression/decompression)
<+ Deferred time
<+ Disk storage (CD, CD ROM, DVD, USB key)
Slow compression / Rapid Decompression
< Satellite Images

Rapid Compression / Slow Decompression



X

L)

L)

*

*

X

L)

L)

Medicine: No artifacts (wrong diagnosis)

Military: Keep the details (target detection),
Movement aspect (mmobile tracking)

Public videos: Eye / face masks (space and time)

Computer Vision: Object detection, Classification, etc.



Problem Statement

The performance of a compression system
depends on:

% The compression ratio
(initial #bits/#Dbits after compression)
<+ The quality of the compressed signal
(subjective/objective criteria)

<+ The complexity of the system

(computational/memory cost)

PROBLEM: How to optimize each of the 3 factors at the same time?
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Standardization History

ITU H.261 H.263 | H.263+ | H.263++
standards

i H.264/SVC &
H.262/ H.264/
Video ITU/MPEG MPea [ MPEGA/AVC MVC HEVC

standards extensions

MPEG wpect | MPEC
standards
Image JPEG JPEG J
2000
standards

| l | | | | | | | | | | l |
1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
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Progress of Compression Standards
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Data size Times
(exabytes) (over 1,990)
7,000 — 10,000
m Data size of surveillance videos ] 9.000
6,000 - \lideo compression rate ’
- Growth rate of surveillance videos / 8,000
5,000 7,000
A huge gap between
4000 the data growth rate and 6,000
’ the video compression rate
5,000
5000 Assume the average compression 4,000
2,000 rate increases ~2x every dec?\de 3,000
000 HEVC/H.265 2,000
0 0 0
1995 2000 2005 2010 2015 2020

Year
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Compression Architecture

DCT, DWT,
Fourier, Filter

Loss of Huffman,

Information AT mEE;
banks, etc. I Shannon, etc. \
/ \ [
Input: ‘
Audio ., Transformation Quantization Entropy Coding
Image
Video
Communication
Channel
Output: i Inverse 1 ( : i :
Audio « | , «— De-Quantization Entropy Decoding
Image Transformation
: & o /) ) N
Video

)
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Digital Image

Image: two-dimensional random process f(x,y) where (x,y)
are the spatial coordinates of a pixel.

Pixel Intensities: random variable

1D Example
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<+ Quantization is the fundamental operation of a
compression system. Its purpose is to select for a given
input wvalue, the closest neighbor belonging to a
predetermined finite set of digital values.

<+ A scalar quantizer of size L a map Q of R in a finite set C,
also called a dictionary (or codebook), containing L scalar
symbols

Q:R — C with C= {§1,§2, ...,§L}

+ We note ¥ = Q(x) the quantization of x.



Uniform Scalar Quantizer

X4

Consider a discrete in time signal f(x) that
belongs to the interval [—A4, A] with a uniform
distribution

L)

1
_ = _ 112A
fr(x) = 2 Vk € [—A4, A]

X4

Divide the interval in L = 2R different intervals >

{P1,..., P} of the same length A = 2—‘;{1 -A A

X4

Enumerate each interval

L)

X4

Define a representative value for each interval.
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Characteristic Function

f(x) 4 —

-+
2-0
+

- @)
P! represent
the different i
classes. i ._ Deadzone of
— 1 A width z = A

A'= Quantization Step
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Mid-rise vs Mid-tread Quantizer

. xp 1
2 s
01.°
£ ——
1 4+
00.-
—
x[n]
2 1 107 1 >
\ !
£ -1
11.*
—'-'_J -
2

Mid-rise quantizer
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00 x|n]
t t T t
2 1 ' 1 2
10,
~: 1 4
2 +

Mid-tread quantizer
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Deadzone Quantizer

~ x—2z/2
X = A Xmax (O{ A +1D

| |
B e
— | — |

Mid-tread quantizer Deadzone quantizer
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Rate-Distortion Optimality

/7

* The RD optimization requires to minimize
the distortion D under the constraint of
R < Ryax, Where Ry, IS a maxXimum A
bitrate bound.

Convex Hull of the
Operational
Rate-Distortion curve

&

)

» A very well known method which has
been used to seek fort the operational
rate-distortion curve is the Lagrangian
optimization algorithm. D

L)

Bounds

&

 The optimization algorithm of the RD
curve for biorthogonal sources could be

X X
described by a cost function / depending WX x
on the distortion D and the rate R which
need to be optimized >
Ju =D + R !

where u is the Lagrange multiplier.
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We discussed about how we perceive the visual information
Acquisition challenges (sampling theorem, aliasing, artifacts)

Pixel-by-pixels transforms as well as filters applied to bigger areas of an
image

The Convolution Theorem
Morphological Analysis of an imnage

Multiresolution analysis that allows us to extract different kind of
information at each level

Basic principles in image coding






