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1 Books and Syllabus

1.1 Some books for further reading

• D. Silvia & J. Skilling: Data Analysis: a Bayesian Tutorial (CUP). Nice small book for the
basics.
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• P. Saha: Principles of Data Analysis. (Capella Archive)

https://www.physik.uzh.ch/~psaha/pda/

Similarly, a good, clear, small volume. Free online version as well as a physical book.

• T. Loredo: Bayesian Inference in the Physical Sciences
http://www.astro.cornell.edu/staff/loredo/bayes/

• D. Mackay: Information Theory, Inference and Learning Algorithms. (CUP) http://www.inference.phy.cam.ac.uk/itprnn/book.pdf
More on the information theory basis of the subject.

• A. Gelman et al: Bayesian Data Analysis (CRC Press) Comprehensive.

2 Inverse Problems

• Analysis problems are inverse problems: given some data, we want to infer something about
the process that generated the data

• Generally harder than predicting the outcome, given a physical process

• The latter is called forward modelling, or a generative model

• Typical classes of problem:

• Parameter inference

• Model comparison

3 Bayesian Inference

What questions do we want to answer? Parameter Inference:

• I have a set of (x , y) pairs, with errors. If I assume y = mx + c , what are m and c?

• I have detected 5 X-ray photons from a source at known distance in the lab. What is the power
output of the source and its uncertainty?

• Given LIGO gravitational wave data, what are the masses of the inspiralling objects?

What questions do we want to answer? Model Comparison:

• Do data support General Relativity or Newtonian gravity?

• Is the standard cosmological model (ΛCDM) more probably than (specified) alternatives?

• Do LHC data support the existence of the Higgs boson, or no Higgs boson?
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4 The meaning of probability

• Probability describes the relative frequency of outcomes in infinitely long trials (Frequentist
view)

• Probability (often) expresses a degree of belief (Bayesian view)

4.1 Probability rules and Bayes theorem

5 Probability rules

• p(x) + p(∼ x) = 1 (sum; ∼ means not)

• p(x , y) = p(x |y) p(y) (product) (the | means ‘given’; it is a ‘conditional’ distribution)

• p(x) =
∑

k p(x , yk) (marginalisation over all possible discrete yk values)

• p(x) =
∫
p(x , y) dy (marginalisation, continuous variables. p(≥ 0) = probability density

function (pdf), s.t. p(x , y)dxdy = probability that x and y occur in an interval dxdy around
values x , y . Note that p can be greater than 1 - it is not a probability, but a probability density.)

• Since p(x , y) = p(y , x)⇒ Bayes theorem:

• Bayes Theorem:

p(y |x) =
p(x |y)p(y)

p(x)

6 Parameter Inference

6.1 Notation

• Data d ; Model M; Model parameters θ

• Rule 1: write down what you want to know

• Usually, it is the probability distribution for the parameters, given the data, and assuming a
model: i.e. p(θ|d,M)1

• This is the Posterior

• To compute it, we use Bayes theorem:

p(θ|d ,M) =
p(d |θ,M)p(θ|M)

p(d |M)

• where the Likelihood is L(d|θ) = p(d|θ,M)

• and the Prior is π(θ) = p(θ|M)

1Sometimes the probabilities are written as begin dependent on any prior information I , i.e. we want p(θ|d ,M, I ).
We won’t include the I explicitly unless we have to for clarity, since it makes the equations look more complicated.
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• p(d|M) is the (Bayesian) Evidence, which is important for Model Comparison, but not for
Parameter Inference, where its role is simply to normalise the posterior

• Dropping the M dependence for now (we will return to it when we discuss Model Comparison):

p(θ|d) =
L(d |θ)π(θ)

p(d)

In the context of parameter inference (i.e. for a given fixed model M), the Evidence serves only to
make the posterior a properly normalised probability distribution as a function of the parameters θ.
For continuous parameters (re-introducing M),

p(d |M) =

∫
p(d |θ,M)π(θ) dθ (6.1)

where the integral may be multidimensional (multiple parameters).

6.1.1 The Likelihood and the Sampling Distribution

It is important to pause here to think about L. We can view this distribution two ways. If we fix θ
(as is rather implied by the expression), then we have the distribution of the data for given θ. This
is a proper probability distribution that integrates to unity when integrated over all possible data d .
Used this way it is properly called the Sampling Distribution.

In Bayesian inference, though, the data are fixed (that is what he have), and this term is treated as a
function of θ. In this context, it is called the Likelihood, and is not a proper probability distribution,
in the sense that integrating it over θ at fixed d does not give unity. Only the full posterior does
this.

6.2 How to set up a problem

6.2.1 Analyse the problem:

Everything is focussed on getting at the posterior, p(θ|d) ∝ L(θ)π(θ).

What are the data, d?
What is the model for the data?
What are the model parameters?
What is the likelihood function L(θ)?
What is the prior π(θ)?

6.3 Marginalisation

This is a straightforward application of the marginalisation rules, e.g. marginalising over all n pa-
rameters except θ1 and θ2:

p(θ1, θ2|d) =

∫
p(θ1, ... , θn|d) dθ3 ... dθn (6.2)
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Figure 1: Credit: Alex Rogozhnikov

7 Sampling

The posterior is often not expressible analytically, so it usually needs to be computed numerically. For
1, 2 or 3 dimensions, evaluating it on a grid in parameter space is usually effective, but this becomes
prohibitively expensive as the dimensionality increases, so another technique is needed. This is to use
a completely different representation of the posterior p(θ): a large number of samples drawn from
the distribution, with (expected) density that is proportional to p(θ). This is usually in an ordered
list, called a ‘chain’, of values of the parameters θ. The samples may also have a weight associated
with them, and are constructed such that the expected weighted number density is proportional to
the posterior. Note that we don’t need to calculate the constant of proportionality (which can be
expensive to do), since in parameter inference problems, the relative probability of parameters is
given by the ratio of p.

The reason why the list is ordered is that the algorithms for generating the chain typically produce
correlated samples, so the ordering is important (one might, for example, want to ‘thin’ the chain by
selecting only separated samples, thus reducing the correlations. If the samples are correlated, then
the ‘effective sample size’ is smaller than the length of the chain.

The samples effectively replace the continuous density p by a (weighted) sum of Dirac delta functions:

p(θ) '
∑S

s=1 wsδ(θ − θs)∑S
s=1 ws

. (7.3)

This is clearly crude for p itself, but for integrated quantities, it makes sense. e.g. an estimate of
the expectation value is

µ̂ = 〈θ〉 =

∫
p(θ)θ dθ '

∫ ∑S
s=1 wsδ(θ − θs)∑S

s=1 ws

θ dθ =

∑S
s=1 ws θs∑S
s=1 ws

. (7.4)

8 Sampling methods

There are several generic methods for generating samples. We will concentrate on three of the most
common ones, highlighting when each of them can usefully be applied. They are:

• Metropolis-Hastings

• Gibbs Sampling

• Hamiltonian (or Hybrid) Monte Carlo (HMC)
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First, though, some general remarks.

8.1 Markov Chain Monte Carlo (MCMC)

These are all examples of MCMC (Markov Chain Monte Carlo), where random steps are taken in
parameter space, according to a proposal distribution. The goal is always to give a chain of samples
of the target distribution (usually the posterior or the likelihood), with an expected number density
proportional to the posterior. The target distribution need not be normalised, but it needs to be
everywhere positive, and normalisable (i.e. the integral is finite).

8.1.1 Markov processes

Markov processes are sequential processes for which the new element depends only on the previous
element, and not on any previous ones. In MCMC, the next point in the chain depends only on the
parameters (and the target value) of the previous point.

The general algorithm is as follows:

• Choose a starting point θ0. No general rule here, but (see later) there are advantages in
having a ’dispersed’ starting point, which is not near the peak of the target distribution (for
convergence tests). A random point drawn from a prior distribution is common.

• Subsequent points θs+1 are generated from θs by generating a trial point through some random
process, and which is either accepted or rejected (depending on the algorithm)2

• If the trial point is accepted, it becomes the next point in the chain. If it is rejected, the
previous sample is repeated in the chain (or equivalently, its weight is increased from 1 to 2
(and can go higher if subsequent trials are also rejected).

• The chain is stopped at some point. There is no magic answer as to when to stop, but the
main point it that you need to test for convergence.

8.1.2 Detailed balance

If the sampling procedure satisfies detailed balance, the expected number density to be proportional
to the target distribution p(θ), which is what we desire.3 We don’t want the target distribution ρ to
evolve as the chain develops, so it is a stationary distribution. In Bayesian inference problems, the
target is sometimes the posterior, sometimes the likelihood, and it can be something different again.

Let us assume there is a discrete set of parameters (the argument generalises to continuous param-
eters), labelled by an index (it can still be a label in a multi-dimensional parameter space). As we
move from one sample to the next in the chain, there is a probability that the state shifts from i to
j given by Pij . The MCMC chain satisfies detailed balance if

ρiPij = ρjPji . (8.5)

One can think of the left hand side as being the flux of probability flowing from i to j , and the r.h.s.
from j to i . If they balance, the chain is stationary.

2Some algorithms, such as Gibbs, may always accept, dependent on some factors.
3For weighted samples, with weights ws , we want the density of points to be proportional to p/ws .
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Detailed balance is a stronger condition than that required to give a stationary distribution (which
can be achieved via a more complicated route).

Proof: if we have samples drawn from a density distribution ρi , then after a transition, the probability
distribution changes to an expected value ρj given by∑

all i

ρiPij (8.6)

including transitions to j from all other states i . If detailed balance is satisfied, this is
∑

i ρjPji =
ρj
∑

i Pji = ρj , since, in the last step, the state j must end up in some i , so the sum of probabilities
is 1. So the expected density stays as ρ and does not change.

8.2 Metropolis-Hastings algorithm

This is perhaps the most common form of MCMC, and is suitable for relatively low-dimensional
problems (perhaps up to 5 or 10). We define a proposal distribution to generate a new proposed
sample, which is either accepted or rejected.

qij ≡ q(θj |θi ) (8.7)

= probability of a proposed sample at θj from a previous state θi . Typically this is a function of
θj −θi , but it doesn’t have to be, and a common choice is a gaussian centred on the previous sample
in the chain.

The algorithm specifies that the point is accepted with probability

α = min

[
1,
ρ(θj)q(θi |θj)
ρ(θi )q(θj |θi )

]
= min

[
1,
ρjqji
ρiqij

]
(8.8)

Let us see if this satisfies detailed balance. For concreteness, let us assume (in a compact notation)
that

ρjqji ≤ ρiqij (8.9)

The probability of an accepted transition from i to j is

Pij = qijmin

[
1,
ρjqji
ρiqij

]
=
ρjqji
ρi

(8.10)

where the first term is the probability that the transition is proposed, and the second is the probability
that it is accepted. To check detailed balance, we need to compute the reverse probability, which is

Pji = qjimin

[
1,
ρiqij
ρjqji

]
= qji (8.11)

since the proposed sample is accepted with probability 1 in this case. Hence the detailed balance
relation is satisfied, ρiPij = ρjPji , with Metropolis-Hastings. Note that if q is symmetric, (i.e.
qij = qji ), the acceptance probability is simplified, and the algorithm is called Metropolis.

Remember! If the proposed sample is rejected, the previous sample is repeated in the chain (or
equivalently, its weight is increased from 1 to 2 (and to 3 if the next proposed sample is also rejected,
and so on).
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Figure 2: Correlation coefficient of samples for uncorrelated samples (top) and badly-correlated
samples (bottom). From D. Mortlock.

In lectures, we will discuss what issues to consider in choosing a proposal distribution. As a rule of
thumb, an acceptance rate of ∼ 0.3 is usually optimal.

8.3 Marginalisation from samples

This is trivial to do. Each sample has values for all of the parameters. If we want the distribution of
θ1 say, then we simply ignore the values of θi , i > 1 in the chain, and plot the distribution of θ1. A
potentially conceptually hard multidimensional integral is solved very easily.

8.4 Correlated samples

Some sampling algorithms will produce correlated samples from the posterior (in fact this is normal).
If nearby samples in the chain are correlated, the effective number of independent samples is smaller
than the total number of samples. We can quantify this with the autocorrelation function, estimated
by

Ĉ∆ ≡
1

S −∆

S−∆∑
s=1

(θs − µ̂)(θs+∆ − µ̂)

Σ̂
(8.12)

where µ̂ is the estimate of the mean parameter (in practice, just the weighted average), and Σ̂ is the
estimated variance. We compute this for every parameter in the problem. Note that Ĉ0 = 1, and
ideally we’d like Ĉ∆ to be zero otherwise. Fig. 2 shows some examples.
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8.4.1 Effective sample size

The effective number of independent samples will be smaller than S if the chain is correlated. One
definition of the effective sample size is

Seff ≡
1

1 + 2
∑∆0−1

∆=1 Ĉ∆

, (8.13)

and ∆0 is the point where Ĉ∆ crosses zero for the first time.

8.5 Gibbs sampling

This is a powerful technique that is useful if the conditional distributions are known.

Algorithm:

• θs+1
1 ∼ p(θ1|θs2, θs3, ... , θsm)

• θs+1
2 ∼ p(θ2|θs+1

1 , θs3, ... , θsm)

• etc ...

Repeat, randomizing (or reversing) the order.

Figure 3: Illustration of Gibbs sampling (from Mackay 2003)

Sometimes this can be applied to very high-dimensional problems (millions). All samples are accepted,
if the conditional distributions can be analytically sampled. (Otherwise, rejection sampling can often
be employed). Can be slow if parameters are highly-correlated. Often useful for Bayesian Hierarchical
Models (see later).

8.6 Hamiltonian Monte Carlo

This is an extremely powerful technique that can be applied to very high-dimensional problems as well.
The snag is that it requires derivatives of the target function with respect to the model parameters.
Nowadays, automatic differentiation techniques can help.
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It is a neat idea, that treats the target distribution as a potential, and the samples are created
by solving Hamilton’s equations for particles orbiting in the potential. The particles are given a
momentum, and move around. After some time, a new proposed sample is generated. The advantage
is that, by taking advantage of knowing something about the shape of the target distribution (through
the derivatives) it can move a long way across the target distribution (‘good mixing’) whilst still
accepting most of the proposed samples.

HMC defines a potential
U(θ) = − ln p(θ) (8.14)

where p(θ) is the target distribution. Think of θ as being the position (θ represents a vector
(θ1, ... , θn)).

There is also a kinetic energy

K (u) =
1

2
u · u (8.15)

where u is the momentum, with ui ∼ N (0,σ2) for some variance σ2 (often taken to be unity).

The Hamiltonian (energy) is
H(θ, u) = U(θ) + K (u) (8.16)

We have defined a new parameter space that is twice as large as the original, and we define a new
target distribution in the 2n−dimensional space:

T (θ, u) = exp[−H(θ, u)]. (8.17)

HMC explores this phase space using Hamilton’s equations:

θ̇i =
∂H

∂ui
= ui

u̇i = −∂H
∂θi

=
∂ ln p

∂θi
(8.18)

The equations normally need to be solved numerically, using an integration scheme (which needs to
be symmetric forward-back, to satisfy detailed balance. A common choice is the leapfrog method
(which is forward-backward symmetric, as required for detailed balance).

After the orbit is integrated for a while, a new proposed sample is generated, and accepted or rejected,
then a new random momentum is generated and the procedure repeated.

For HMC, the full algorithm is (from Hajian 2006):
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Hamiltonian Monte Carlo
1: initialize θ(0)

2: for i = 1 to Nsamples

3: u ∼ N (0, 1) (Normal distribution)
4: (θ∗(0), u∗(0)) = (θ(i−1), u)
5: for j = 1 to N
6: make a leapfrog move: (θ∗(j−1), u∗(j−1))→ (θ∗(j), u∗(j))
7: end for
8: (θ∗, u∗) = (θ(N), u(N))
9: draw α ∼ Uniform(0,1)
10: if α < min{1, e−(H(θ∗,u∗)−H(θ,u))}
11: θ(i) = θ∗

12: else
13: θ(i) = θ(i−1)

14: end for

If the derivatives are hard, you might try Sympy (https://www.sympy.org/en/index.html) to dif-
ferentiate U automatically and produce (quite a few lines of!) python code, and there are other
possibilities, such as pymc and Jax which will automatically differentiate under the hood. Stan is
also a very powerful language for solving such problems.

Issues to consider are how many integration steps per point in the chain, and how big those steps
should be. Small steps yield more accurate integration, so H should change little, and almost all
points are accepted. But this is expensive, as many likelihood evaluations are needed. Bigger steps are
faster, and the Metropolis step sorts out any issues arising from imperfect integration. An acceptance
rate of ∼ 0.7 is usually good. For further discussion, see Hajian (2006), astroph/0608679.

If we can sample from T we can get the distribution of p by (trivially) marginalising over u. Since T =
exp[−U(θ)] exp[−K (u)], marginalising over u gives p (up to an irrelevant normalisation constant).

Why does this work? Principally, because, if we integrate Hamilton’s equations, H should be con-
served, so the target density is constant in phase space, and all samples should be accepted. Also,
if we integrate for long trajectories, we can travel far in parameter space and explore it well. This is
called ‘good mixing’.

What challenges are there? Integration is not exact, and we want to do it quickly, so it is usually
done with numerical integration (e.g. leapfrog) with big steps. This approximate integration means
H is not perfectly conserved. We therefore add a Metropolis-Hastings accept/reject step, and this
sorts out any inaccuracies. At the end of the orbit integration, a new random momentum is drawn,
and a new orbit then leads to a new sample.

9 Convergence tests

It is vital to know that the chain has enough points in it to represent well the target distribution. It
will never be perfect, but asymptotically it approaches the right distribution if the detailed balance
condition holds. How do we know? A standard technique is the Gelman-Rubin test (1992) .
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Figure 4: Radon gas (from Pymc website).

10 Bayesian Hierarchical Models

In many practical situations, the likelihood can be difficult to evaluate, since it may be hard to write
a direct expression down for the sampling distribution. But we can often make progress by analysing
problems as a multilevel system, or Bayesian Hierarchical Model.

A typical example of a BHM is when we have a population of objects, and we use the collection of
individual objects to infer something about the population, whose properties may be specific by one
or more population parameters θ.

10.0.1 Ordinary Bayes vs Hierarchical Bayes

Ordinary Bayes:
p(θ|d) ∝ p(d |θ) p(θ) (10.19)

Hierarchical Bayes: we introduce extra (unobserved) ‘latent’ variables into the problem

p(θ,φ|d) ∝ p(d |θ,φ) p(φ|θ) p(θ) (10.20)

where φ are latent variables (or parameters). Often these are marginalised over to obtain

p(θ|d) ∝
∫

p(θ,φ|d) dφ. (10.21)

11 Radon data modelling

Radon is a carcinogen and levels of radon in houses in the US have been studied, with a famous
dataset collected and analysed in Gelman et al.’s BDA book.

The data are noisy radon measurements, made in different counties in the US, and on different
floors (the radon levels will be higher nearer to the ground). The idea is to pool data from many
house measurements, to assess the radon risk in a county c , and to extrapolate to living areas if the
measurements were taken in the basement.
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The data model is as follows:

• We assume that the expected radon level is a linear function of the floor level f ,

µ = ac + bc f (11.22)

(which is 0 or 1 in the measurements, where 0 is the basement, and 1 the living space).

• We assume the measurement error is a zero mean gaussian, but we don’t know the error
(variance ε2), i.e.

d(f , c) = ac + bc f + n (11.23)

where n ∼ N (0, ε2) and we want to infer ε.

• You see that the coefficients ac and bc are not fixed, but vary with county. We assume that they
are drawn from a normal distribution with a universal mean and variance, i.e. ac ∼ N (µa,σ2

a),
where µa and σ2

a are unknown. Similarly for bc .

A good starting point is to draw a diagram that represents what you would need to do to generate
the data. This Directed Acyclic Graph (DAG) for this is shown in Fig. 5. It is a Bayesian Hierarchical
Model, with variability at several levels.

As usual, we analyse the problem systematically:

• Rule 1: what do we want to know? Quite a few things: risk levels for each county (ac);
extra risk in basements (bc); variability from house to house (or measurement device error) ε;
variation across country (σa) etc., all conditioned on the data (i.e. posterior probabilities).

• Data: radon measurements r̂ .

• Model. See the DAG.

• Parameters: µa,σa,µb,σb, ac , bc , ε

• Likelihood (of the final level of the DAG): r̂ ∼ N (rtrue, ε2).

Sample from all of the unknowns.

12 Model Comparison

• A higher-level question than parameter inference, in which one wants to know which theoretical
framework (‘model’) is preferred, given the data (regardless of the parameter values)

• The models may be completely different (e.g. compare Big Bang with Steady State, to use an
old example),

• or variants of the same idea. E.g. comparing a simple cosmological model where the Universe
is assumed to be flat, with a more general model where curvature is allowed to vary (i.e. adding
an extra parameter can be considered as a new model).

• The sort of question asked here is essentially ‘Do the data favour a more complex model?’

• Clearly in the latter type of comparison the likelihood itself will be of no use - it will always
increase if we allow more freedom.
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RADON

r̂

rtrue

ac bc

µa σa µb σb

ε

f
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µb ∼ N (0, 22)

σb ∼ N+(0, 1)

µa ∼ N (0, 102)

σa ∼ N+(0, 1)

ac ∼ N (µa, σ
2
a) bc ∼ N (µb, σ

2
b )

rtrue = ac + bcf

r̂ ∼ N (rtrue, ε
2)

ε ∼ N+(0, 1.5
2)

1

Figure 5: Radon DAG with probability distributions. N+ indicates a positive half-gaussian distribu-
tion.

Figure 6: The Planck power spectrum, with the theoretical model with best fitting cosmological
parameters. Models other than the Big Bang ΛCDM model may struggle to reproduce the data as
well as this, so p(d|M) would be smaller than p(d|M = ΛCDM).
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12.1 Bayesian Evidence, or Marginal Likelihood

• We denote two competing models by M and M ′.

• We denote by d the data vector, and by θ and θ′ the parameter vectors (of length n and n′).

• Rule 1: Write down what you want to know.

• Here it is p(M|d) - the probability of the model, given the data.

• Use Bayes’ theorem:

p(M|d) =
p(d|M)π(M)

p(d)

• The Bayesian Evidence is

p(d|M) =

∫
dθ p(d|θ,M)π(θ|M),

• If a model has no parameters, then the integral is simply replaced by p(d|M), which is just
the sampling distribution in this simple case.

• The relative probabilities of two models is

p(M ′|d)

p(M|d)
=
π(M ′)

π(M)

∫
dθ′ p(d|θ′,M ′)π(θ′|M ′)∫
dθ p(d|θ,M)π(θ|M)

.

• With ‘uninformative’ (equal) priors on the models, π(M1) = π(M), this ratio simplifies to the
ratio of evidences, called the Bayes Factor,

B ≡
∫
dθ′ p(d|θ′,M ′)π(θ′|M ′)∫
dθ p(d|θ,M)π(θ|M)

.

Challenges: The evidence requires a multidimensional integration over the likelihood and prior, and
this may be very expensive to compute.

• Algorithms: we won’t study these in this course, but the most used method is nested sampling
(examples are multinest, polychord, dynesty), where one tries to sample the likelihood in an
efficient way.

12.2 Gaussian Example

In this gaussian example, we can evaluate the integrals analytically.

Let M0 be x ∼ N (0,σ2), and M1 be x ∼ N (µ,σ2), where the prior on µ is gaussian with variance
Σ2. Let the measurement be x = λσ.

p0(x |M0) =
1√
2πσ

e−x
2/(2σ2)

and

p1(x |µ,M1) =
1√
2πσ

e−(x−µ)2/(2σ2)

15
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Figure 7: The Bayes Factor for a gaussian likelihood (variance σ2), and a gaussian prior (variance Σ2). The
x axis =log10(Σ/σ); the y axis is datum/σ. Figure: R. Trotta.

Hence

B01 =
p0(x |M0)∫∞

−∞ p1(x |µ,M1) p1(µ|M1) dµ

so

B01 =

√
1 +

Σ2

σ2
exp

[
− λ2

2(1 + σ2

Σ2 )

]

If λ � 1, then B01 � 1 and M1 is favoured. If λ ' 1 and σ � Σ, then M0 is favoured (Occam’s
razor). If likelihood is much broader than prior, σ � Σ then B01 ' 1 and nothing has been learned.

This diagram is very interesting and instructive, and somewhat counter-intuitive. To favour the more
complicated model with high probability (say 10 times the probability of the simple model), then the
deviation from the simple model parameter value needs to be at least about 3σ. So a 3σ ‘result’ is
really not very significant in a model comparison context, since a probability of 10% is not particularly
small.

Summary

• Bayesian formalism can easily be generalised to model comparison

• Resulting integrals over parameter space may be challenging to compute

• Evidence ratios have sensitivity to the prior, even asymptotically. Beware of using the Bayes
factor in high dimensions, since the prior volume may be highly uncertain and the Bayes factor
can be very sensitive to the limits that are placed on the parameters

13 Likelihood-free inference, or Simulation-based inference

Likelihood-free inference (LFI), or Implicit Likelihood, or Simulation-based inference (SBI) are alter-
native names for a very different approach to Bayesian parameter inference. It is particularly suitable
for cases where the likelihood is either very expensive, or impossible to compute. It requires a way
to simulate the data, usually via a computer program, where the model parameters can be adjusted.
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Figure 8: Samples from the joint distribution of parameter θ and data d , p(θ, d).

The basic idea is to run a very large number of simulations with random parameters (drawn from
some prior), and to keep only those that match the experimentally obtained real data. One then
inspects the distribution of the parameters that gave rise to the matching data, and this is the
posterior.

There are some obvious challenges to this approach. The first is that if the data are continuous,
rather than discrete, the probability of obtaining exactly the real data is zero (a set of measure
zero), so a certain tolerance may be needed. Secondly, with many data points, the probability of
matching all the measured data (even allowing a certain tolerance) is extremely small, especially
as the dimensionality of the data increases. For example, running a simulation of the Universe and
expecting to reproduce the Milky Way with its neighbour Andromeda, and all the dwarf galaxies of
the Local Group, is vanishingly small.

As a result, one demands much less than a perfect match, and typically one requires only that certain
summary statistics are reproduced approximately.

Example summary statistics are: correlation function, power spectrum.

13.1 ABC

Let is look at a very simple case, of a model with one parameter θ, and one data point d . We draw
θ from some prior π(θ), and run a simulation with that parameter value, generating a data point.
We repeat this many times, and sample from the joint distribution p(θ, d). See Fig. 8.

The simplest way to obtain the posterior is to select those points that lie close to the measured d ,
within some tolerance ε. This is (rejection sampling) ABC (Approximate Bayesian Computation).
The distribution of θ values will approach the posterior p(θ|d) as ε→ 0, but at some point one runs
out of points, and it gets noisy. To get enough points in the strip, a very large number of simulations
need to be run, so it can be expensive. See Fig. 9.

Notice that one can also obtain an estimate of the likelihood (or rather, the sampling distribution),
by selecting points at (almost) fixed θ. Sometimes this approach is called implicit likelihood rather
than likelihood-free, since the likelihood is in there somewhere. See Fig. 10.

As an alternative to ABC, the distribution of points can be fitted with a continuous function, using
machine learning techniques generically called kernel density estimation, or KDE. DELFI is a package
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Figure 9: Keeping samples that are close to the measured datum gives an approximation to the
posterior, p(θ|d), which is what we want (Rule 1).

Figure 10: Cutting vertically learns the sampling distribution, p(d |θ).
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that does this. With the distribution fitted, the posterior can be obtained from the approximated
probability density evaluated at d, as a function of θ.

In this 2D case, all works well, but as the dimensionality increases, this technique rapidly becomes
unfeasible, as too few points will be close to the data. The size of a typical physics experiment
dataset will be far too large to handle (If there are N data, and m parameters, the joint distribution
is N + m-dimensional, which can be huge), and even the summary statistics are likely to be too
numerous, so we need to compress these radically down to a handful.

We usually need some massive data compression.

14 Extreme Data Compression

If we have m parameters, then the maximum compression of the summary statistics, without leading
to degenerate solutions, is down to m numbers. Can we do this in a way that preserves information?
The simplest is the MOPED algorithm

Assume:

• gaussian data (sampling distribution);

• information is in the mean µ(θ)

• data covariance matrix Σ is independent of parameters

• derivatives of µ w.r.t. θ beyond the gradient are not important.

Even if the assumptions are not satisfied precisely, the resulting data compression can still contain
almost all the information on the model parameters.

14.1 Derivation of MOPED compression

MOPED was originally derived a different way, for a different purpose (Heavens et al. 2000, MNRAS,
317, 965). This derivation, from Alsing & Wandelt, MNRAS, 2018, 476, 60 is easier.

The log likelihood is

ln p(d|θ) = cst.− 1

2
[d− µ(θ)]T Σ−1 [d− µ(θ)] (14.24)

Expanding about some fiducial point θ∗, this is approximately

ln p(d |θ) = cst.− 1

2

[
d− µ(θ∗)−

∂µ

∂θα
θ̃α

]T
Σ−1

[
d− µ(θ∗)−

∂µ

∂θβ
θ̃β

]
(14.25)

where θ̃α ≡ θα − θ∗α and we are using the summation convention over α and β. Expanding the
brackets (the two cross terms give the same):

ln p(d|θ) = cst.− 1

2
[d− µ(θ∗)]T Σ−1 [d− µ(θ∗)]

+
∂µ

∂θα

T

Σ−1 [d− µ(θ∗)] θ̃α

− 1

2

[
∂µ

∂θα

]T
Σ−1

[
∂µ

∂θβ

]
θ̃αθ̃β. (14.26)
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It’s instructive to pause and comsider this expression. The first term after the constant depends only
on the data, not on the parameters θ. It is just ln p(d|θ∗) which doesn’t vary with θ, so we can
ignore it as we are interested in the parameter dependence (i.e. we want the θ dependence of the
likelihood).

The last line does not depend on the data, only on the parameters (as does the prior).

So how do the data change the prior to the posterior? The data coupling to the parameters is only
in the second line. Remarkably it comes in only in the combinations

yα = bT
α .(d− µ∗) (14.27)

where the MOPED vectors are

yα = bα = Σ−1 ∂µ

∂θα
(14.28)

We don’t need all N original data, d, but only the M values yα! M can be� N. We have massively
compressed the data, and if the assumptions hold, the likelihood is the same - no information has
been lost.

Alternatively, we can translate yα to point estimates of the parameters, with the same assumptions
as above. Maximising ln p(d|θ) w.r.t. θ gives:

0 =
∂ ln p(d|θ)

∂θγ
= yγ − (bT

αΣ−1bγ)θ̃α (14.29)

where I’ve used ∂θ̃β/∂θγ = δKβγ (Kronecker delta). Hence point estimates (maximum likelihood) are

θ̃ = (bTΣ−1b)−1y. (14.30)

i.e.
θ̂ = θ∗ + D−1y. (14.31)

where the matrix D has elements Dαβ = (bT
αΣ−1bβ).

You can use either y or θ̂ as the ‘data’ in SBI. Both are ‘statistics’ (a statistic is a function of the
data d).

14.2 Alternatives to MOPED

We can use neural networks to find informative summaries (especially when the signal is coming from
Σ, not µ). IMNN (information maximizing neural network; Charnock et al. 2018, PRD, 97, 3004).
Also Graph NN (Makinen et al. arxiv 2207.05202).

15 Validating the model

Bayesian analysis assumes that the model is the correct one (or, in model comparison, that one of the
models is correct). How do we know that the model is a good description of the data. I don’t know
a Bayesian way to do this, but we can use a frequentist/Bayesian approach: Posterior Predictive
Distributions (PPDs).

From our data x we have the posterior p(θ|x). We can draw samples from this (in fact we already
have some), and generate simulated data y according to the model, and ask if these simulated
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datasets look anything like the original data. For example, we might make a statistic T (y) and plot
its frequentist distribution, and see whether T (x) is consistent with being drawn from the distribution.

p(y|x) =

∫
p(y,θ|x) dθ

=

∫
p(y|θ, �x) p(θ|xdθ (15.32)

which involves the sampling distribution and the posterior. This works for SBI as well as MCMC.
For SBI I would not choose the compressed data for T , but something closer to the raw data (e.g.
mean, variance, other standard stats).

16 Selection effects: non-detections and the like

What do we do when our experiment does not always return a result? This is a pretty common
situation, when for example the signal is too small (or indeed, too large, if the instrument can’t make
a measurement there). What should we do? The Bayesian approach is again to assess the problem
logically, and a useful approach is to start with a DAG to mimic generating the data.

We’ll consider two types of missing data:

• Censoring: the experiment informs us that a measurement was attempted, but no detection
was made

• Truncation: if no measurement is made, we don’t even know if there is anything there

To give an example of each from astronomy. In the first case we might make a catalogue of bright
stars that are visible at optical wavelengths in a patch of sky. Then we see if any of them emit radio
waves. We point a radio telescope in the direction of the field of stars, and measure the radio flux
from the locations of each star. For some of them, we don’t detect anything, and simply report that
the flux is below the detection limit. In this case we know how many stars are undetected in radio
wavelengths.

For the second case, we don’t have the optical image, and only make the radio observations. We
simply don’t see the stars with no detectable radio emission, and don’t know how many there are.

Let’s consider this example:

16.1 Measuring the mean from censored data

An experiment measures the mass of (a known number) N identical objects, whose true mass is
µ. The measurement error distribution is gaussian, with zero mean and (known) variance σ2. The
measurements are independent of each other. For M ≤ N of the objects, the mass is returned by
the experiment as detected (included: I = 1), but for N −M of the objects, the experiment tells us
that it can’t measure it - the mass is too small. Its criterion is that it thinks the mass is less than
xmin = 3µ and it is not confident of the measurement, so it is not included (I = 0). It does not tell
us what it thinks the mass is.

How do we approach this in a Bayesian way? Much the same as before. It’s helpful to start with a
DAG that describes the generation of data by the model, as shown in Fig. 11. µ is drawn from a
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Figure 11: DAG for the censored data model.

prior, and generates N copies of x , each with an error drawn from a gaussian. These x values are
either returned as is, as detected objects (xd = x), or a no detection (I = 0) is returned if x < xmin.

We start with Rule 1: we want the posterior probability of µ, given the M detected data xd , plus
the N −M non-detections. Using Bayes, and a prior π(µ) on µ:

p(µ|xd , I ) ∝ p(xd , I |µ)π(µ) (16.33)

Now, as usual, we introduce the latent variables x , and marginalise over them. Let us do this a little
formally, since x = xd if detected. For notational convenience, let us assume that the experiment
returns xd = 0 if not detected (so we can drop I and just use the value of xd)

p(µ|xd) ∝ π(µ)

∫
p(xd , x |µ) dx

∝ π(µ)
N∏
i=1

∫
p(xd ,i |xi ,µ) p(xi |µ) dxi

(16.34)

Now we split the sample into detections and non-detections. For the detections, p(xd |x) = δD(x−xd)
so the integral is trivial, and for the non-detections, x can be any value below xmin, so p(xd ,i = 0|xi ) =
1 if xi < xmin, so for the undetected objects, the integral is∫ xmin

−∞
N (xi |µ,σ2) dxi ≡ Φ(xmin), (16.35)

where Φ(x) ≡ 1
2

[
1 + erf

(
x√
2σ

)]
and erf is the error function.

Hence the posterior is

p(µ|xd) ∝ π(µ) ΦN−M(xmin)

(
N

M

) M∏
i=1

N (xd ,i |µ,σ2). (16.36)

Notice that we have included a combinatorial factor, to account for the multiple ways that M
detections can be drawn from N. For fixed N and M it is a constant and can be absorbed into the
proportionality. We have all we need to compute the posterior once we specify a prior for µ (as a
location parameter, a uniform prior is appropriate).
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16.2 Truncation

Let us now modify the experiment, such that we don’t know how many non-detections there are -
the experiment returns only the detections. The generative model is the same, except that we don’t
know N, and we see only the xd > 0 data.

The data model has an extra parameter in it, N, and we are not very interested in it, so it is a
nuisance parameter, and we marginalise over it.

The joint posterior for µ and N is

p(µ,N|xd) ∝ p(xd |µ,N)π(µ)π(N). (16.37)

The maths follows as before, but we need to keep the combinatorial term, since it depends on N.
After (discrete!) marginalising the posterior over N (which needs to be at least M, obviously), we
get

p(µ|xd) ∝ π(µ)
∞∑

N=M

π(N) ΦN−M(xmin)

(
N

M

) M∏
i=1

N (xd ,i |µ,σ2). (16.38)

A suitable prior for N would be the Jeffreys prior, since N is a scale parameter. π(N) ∝ 1/N.

A Appendix: Bayesian Hierarchical Model example

Here I expand on the example of a simple Bayesian Hierarchical Model, derive an analytic solution
and show how it can be solved via Gibbs sampling.

A.1 Straight line fitting with errors in x and y

Let’s consider a more complex parameter inference problem, which we can solve analytically, but also
via Gibbs sampling. Let’s suppose we want to fit a straight line y = mx to some data points with
errors in both x and y .

• Data: we have a set of data pairs (x̂ , ŷ) (in fact for simplicity we will have just one pair)

• x̂ and ŷ are the observed data, related to (unknown) true values x and y

• Model: y is linearly related to x , y = mx . Errors are gaussian and independent.

• Parameter: m.

• First, apply Rule 1: write down what you want to know:

p(m|x̂ , ŷ)

(strictly, this is also conditional on knowing the error distribution for x̂ and Y , but let us omit
it for clarity).

• This is a problem that we can solve analytically, given simple priors, but we will also illustrate
how to sample from m using Gibbs sampling.

• Break problem into two steps.
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• There are extra unknowns in this problem (so-called latent variables), namely the unobserved
true values of x̂ and ŷ , which we will call x and y .

• Note that the model connects the true variables. i.e.,

y = mx .

(i.e. NOT ŷ = mx̂).

• The latent variables x and y are nuisance parameters - we are (probably) not interested in
them, so we will end up marginalising over them.

Analysis

• We assume we know the sampling distribution of x̂ and ŷ , i.e. we assume we know

p(x̂ , ŷ |x , y) = p(x̂ |x)p(ŷ |y)

where the equality holds if the errors are independent.

• Let us now analyse the problem. First we use Bayes’ theorem:

p(m|x̂ , ŷ) =
p(x̂ , ŷ |m) p(m)

p(x̂ , ŷ)
∝ p(x̂ , ŷ |m) p(m)

• Now we introduce the latent variables x , y , and write the likelihood above as a marginal integral
over x and y :

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ , x , y |m) p(m) dx dy

• Manipulate using the product rule

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x , y ,m) p(x , y |m) p(m) dx dy

• The first probability is not dependent on m, i.e.

p(x̂ , ŷ |x , y ,m) = p(x̂ , ŷ |x , y)

• Secondly, the product rule gives

p(x , y |m) = p(y |x ,m)p(x |m)

• Next: the model is deterministic:

p(y |x ,m) = δ(y −mx)

• When multiplied by p(m), p(x |m) p(m) = p(x ,m), the (joint) prior on x and m. We’ll later
assume that this is a constant.4

4One could also reasonably put a prior on the angle, which would lead to a slightly different calculation
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Figure 12: Unnormalised posterior distribu-
tion of the slope m, for x̂ = 10, ŷ = 15.
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Figure 13: Unnormalised posterior distribu-
tion of the latent variable x , and the slope m
(on the y -axis).

• Putting these together, we find

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x , y) p(y |x ,m) p(x ,m) dx dy

∝
∫

p(x̂ , ŷ |x , y) δ(y −mx) p(x ,m) dx dy (A.39)

• The integration over y is trivial with the Dirac delta function:

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x ,mx) p(x ,m) dx .

• Assume errors in x̂ and ŷ are independent Gaussians, and assume the uniform prior for p(x ,m).
For simplicity, let us also take σ2

x = σ2
y = 1.

•
p(m|x̂ , ŷ) ∝

∫
e−

1
2

(x̂−x)2
e−

1
2

(ŷ−mx)2
dx

• Completing the square and integrating (exercise for the student)

p(m|x̂ , ŷ) ∝ 1√
1 + m2

e
− (−mx̂+ŷ)2

2(1+m2) .

This is shown in Fig. 12.

A.1.1 Results

We have marginalised analytically over x , but if we want, we can investigate the joint distribution of
x and m:

p(x ,m|x̂ , ŷ) ∝ p(x̂ , ŷ |x ,mx) p(x) p(m) ∝ e−
1
2

(x̂−x)2
e−

1
2

(ŷ−mx)2
.

This is shown in Fig. 13.

A.1.2 Gibbs Sampling

Let us see how we would set this up as a Gibbs sampling problem.
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Figure 14: Gibbs sampling of the latent vari-
able x , and the slope m.

Figure 15: Gibbs sampling of the slope m.

• At fixed x , the conditional distribution on m given x is (note that everything is conditional on
the data x̂ , ŷ , but we partly suppress this dependence for clarity - we will be alternately Gibbs
sampling x and m so need the conditionals p(x |m) and p(m|x).):

•

p(m|x , [x̂ , ŷ ]) ∝ exp

[
−(ŷ −mx)2

2

]
∝ exp

−x2
(
m − ŷ

x

)2

2

 ,

• i.e.

p(m|x , [x̂ , ŷ ]) ∼ N
(
ŷ

x
,

1

x2

)
is a normal N (µ,σ2) distribution (in m).

• The conditional distribution of x given m is

p(x |m, [x̂ , ŷ ]) ∝ exp

[
−(x̂ − x)2

2
− (ŷ −mx)2

2

]
.

• After completing the square, this becomes another normal distribution (in x now):

p(x |m, [x̂ , ŷ ]) ∼ N
(
x̂ + ŷm

1 + m2
,

1

1 + m2

)
Hence we can sample alternately from m and x , using the conditional distributions, to sample
p(m, x |x̂ , ŷ), and marginalise over x in the normal MCMC way by simply ignoring the values of x .

Gibbs is only one option for sampling. MCMC with Metropolis-Hastings, or Hamiltonian Monte
Carlo, would also be perfectly viable.
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