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Learning Physics and Probabilities 

p(x) = Z�1 e�U(x)

• Unsupervised learning: estimate p(x) for x 2 Rd from {xi}i
Physical systems at equilibrium: learn the energy U(x)

Applications:

• Data generation by sampling p(x)

• Understand the physics from the energy U(x).

Curse of dimensionality unless strong priors
9

FIG. 5: Comparisons of the logarithm of the matter density field log(⇢) in Quijote simulation maps and in our statistically
synthesized maps, showing how well the syntheses reproduce the statistical properties of log(⇢) in the Quijote maps. The error
bars correspond to the realization-per-realization dispersion. a) A map of log(⇢) from the Quijote simulations. b) A map of log(⇢)
synthesized based on WPH statistics of a sample of 30 Quijote maps (see Sec. IV A). c)–h) Statistics for log(⇢) estimated using

300 maps from the Quijote simulations (orange lines) and 300 syntheses (dashed blue lines). c) Power spectrum, d) standard
deviation of the power spectrum, e) pixel value PDF on a linear scale, f) bispectrum in the flattened triangle configuration,

B(k/2, k/2, k), g) bispectrum in the squeezed triangle configuration, B(k, k, k3), for k3 ⌧ 1, and h) pixel value PDF on a
logarithmic scale.

�(⇢) to match those estimated from Quijote simulations. How-
ever, something slightly di↵erent is implemented in practice so
some details are in order. Regarding the target WPH moments,
they are collected in a vector �target obtained by averaging (a
sample version of) Eq. (6) over a set of Nlearn = 30 Quijote
maps with periodic boundary conditions. Each Quijote map
has a surface area of 1 (Gpc/h)2 and is sampled on a grid of
256⇥256 pixels. We found empirically that a set of Nlearn = 30
maps was large enough to estimate the WPH coe�cients up to
J = 6 with an accuracy su�cient for our purposes. We could

have used a larger training set but we restrained ourselves to
Nlearn = 30 in order to illustrate that our method performs well
with a small number of examples.

Regarding the synthesis process itself, maps are not pro-
duced individually but in batches of Nbatch maps. We start from
Nbatch maps ⇢1, . . . , ⇢Nbatch of size 256 ⇥ 256 obtained as inde-
pendent Gaussian white noise realizations. Then, their pixel
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FIG. 11. Top: Histograms of �0 of the Euclid syntheses compared to the training dataset (left with L1, right without L1.
Middle: Histograms of ��k=1

1 . Bottom: histograms of ��k=3
0 .

FIG. 12. Top: Histograms of �0 of the Euclid syntheses
compared to the training dataset (left with L1, right with-
out L1. Middle: Histograms of ��k=1

1 . Bottom: histograms
of ��k=3

1 .

One can thus iteratively compute K0 with a maximum
likelihood gradient ascent which iteratively updates the
values of K0 with a step size ✏:

K0,q+1 � K0,q = ✏(µ(K0,q) � µ0). (55)

This is a convex optimisation which is guaranteed to con-
verges to K0 such that µ(K0) = µ if ✏ is su�ciently small.
It is usually initialised with K0 = 0.

This algorithm requires to initially estimate µ0 and
then estimate µ(K0,q) at each iteration q. Given R re-
alisations �0,r of �0, one estimates µ0 with the empiri-
cal average R

�1
P

r U(�0,r). Averages over the measure
µ(K0,q) are obtained with an MCMC algorithm. In a
nutshell, the fine-grid method is like WI-RG but done in
one shot, i.e. trying to estimate directly the Hamiltonian
at the finest scale.
There are two numerical issues that can drastically e↵ect
the e�ciency of the method in presence of long-range cor-
relations. Let us focus on the case of second-order phase
transitions to explain what the problem is.

• Critical Slowing Down. In order to infer K0

one has to obtain µ(K0) by MCMC. However, if
pK0(�) is a faithful representation of the original
probability distribution then the MCMC has a very
long decorrelation time since the time needed to
accurately estimate µ(K0) becomes huge close to
the second-order phase transition, and diverges as
a power law of ` at the critical point. Although
some acceleration MCMC techniques have been de-
veloped to overcome this problem in some cases
[8], the issue of the critical slowing down is a ma-
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FIG. 5. Mean value of the field (magnetization) of the '4

model from the training data set. Three state points studied
in this paper are shown in the dashed lines (� = 0.50, 0.67,
and 0.76).

B. The '4 field

The '4 field theory plays a central role in the theory
of critical phenomena [10]. It has been introduced to
describe the second-order ferromagnetic phase transition
(in this case the field ' represents the magnetization pro-
file). It was later understood, and explained using RG,
that such field theory is also a good model for the liquid-
gas phase transition, which is in the same universality
class.
Since the '4 field theory is the simplest model which
contains all the key ingredients of standard second-order
phase transitions, such as large scale collective behav-
iors, critical properties, long-range correlations, it has
also played a central role in testing new techniques and
ideas [1]. The generalization to more complex cases, e.g.
to phase transitions associated to more general symmetry
breaking and represented by non-scalar field theories, is
often straightforward. Here, we follow the same strategy
of focusing on the '4 field theory as a central example,
and apply the WI-RG method to it in two dimensions.

1. The model and its phase transition

The microscopic '4 model is given by [10]

H0('0) =
�

2
'T

0 '0 +
X

i=1

v0('0(i)), (26)

where 'T
0 '0 =

P
hi,i0i('0(i) � '0(i0))2 with a sum of

lattice neighbors, and v0('0) = '4
0 � (1 + 2�)'2

0. In this
way one sees explicitely that the Hamiltonian contains
two competing terms: a local double-well potential and
the discrete Laplacian. This model is known to undergo
a phase transition in the thermodynamics limit for � =
�t

c ' 0.68 [5]: for � > �t
c the system is in the ordered

phase whereas for � < �t
c the system is disordered.

FIG. 6. Realizations of the true (left) and generated (right)
fields for � = 0.60, 0.67, and 0.76.

Henceforth we perform all the numerical experiments
using the Wasting-Metropolis algorithm and considering
system of linear size ` = 32. Figure 5 shows the mean

of the magnetization, defined as m = |
P`2

i=1 '0(i)|/`2,
as a function of temperature. The evolution of m shows
the increase of magnetization at low temperature. Due
to finite size e↵ects [2] the critical value of � for ` = 32 is
�c ' 0.67, as shown in the Appendix E by studying the
behavior of the susceptibility. We focus on three values
of �: � = 0.6, � = �c = 0.67 and � = 0.76 which cor-
respond respectively to the three di↵erent regimes of the
model (disordered, critical and ordered) and are shown
by vertical dashed line in Fig. 5. For each value of �, we
generate R = 10000 realizations of the field '0 which we
shall use as training dataset to perform the WI-RG.

2. WI-RG Results

We now show the results of WI-RG applied to the '4-
model. In the implementation of WI-RG we choose win-
dowed Legendre polynomials as basis function um(t) to
decompose the scalar potential in eq. (??). See App. D 3
for more details on the numerics. We first show in Fig. 6
realization of the fields obtained from WI-RG (right pan-
els) for the three di↵erent values of � discussed above.
By comparing them to the ones of the true process in the

'4 weak lensing Matter density Turbulences

Learn from few samples



Learning Physics and Probabilities 

p(x) = Z�1 e�U(x)

• Unsupervised learning: estimate p(x) for x 2 Rd from {xi}i
Physical systems at equilibrium: learn the energy U(x)

Three Problems:

• Sample p✓(x) to generate new data x.

A solution: scale separation and renormalisation group.

Di�cult if the energy U(x) is non convex: usually the case.

U(x) ⇡ ✓T �(x) (Ansatz)

• Optimise ✓ to minimise the approximation error.

, p✓(x) = Z1
✓ e

�✓T�(x) closely approximates p(x).

• Find �(x) = {�k(x)}k which can linearly approximate U(x):



  Multiscale Interactions 
   Dimension Reduction            

u1

u2

Interaction of d variables x(u): pixels, particles, agents...

Fast multipole algorithms.

Regroupement of d interactions in O(log d) multiscale terms.



   Multiscale Interactions Claims

1. Long range spatial dependencies are captured by short range 
dependencies over wavelet coefficients : reduction of dimension 
of  

2. Can specify           from interaction energies across scales, with 
the renormalisation group, and  which are “nearly” convex. 

3. Interaction energies across scales are non-linear, but can be 
partly linearised with a modulus or a ReLU by eliminating 
phases to define  

�(x)

�(x)

�(x) (similar to deep networks).



          Overview

• I:  Sampling, max likelihood and score matching estimations 

• II: Renormalisation group and energy interactions across scales 

• III: Scattering-Gaussian models of scale interactions: turbulences



 I. Sampling by Langevin (or MCMC)

• Computing a sample x of p✓ with a Langevin dynamics

Exploration / Exploitation

xt+1 � xt = ✏rx log p✓(xt) +
p
2✏ zt where zt ⇠ N (0, Id)

Converges but very slow if � log p✓(x) is non-convex in x.

Exponential convergence if the energy is strictly convex,

The rate is the inverse of the condition number of �r2
x log p✓(x).

(Hessian of energy)

or badly conditioned.

Pb: we want p✓ ⇡ p, but �r2
x log p is usually not positive,



   Optimisation of  Parameters ✓

KL(pkp✓) =
Z

p(x) log
p(x)

p✓(x)
dx

• Estimated by minimising Kullback-Liebler divergences

= Ep[log p(x)� log p✓(x)]

• For � log p✓(x) = logZ✓ + ✓T�(x) the optimisation is convex

which requires to compute samples of p✓ : expensive.

with r✓ Ep(log p✓) = Ep(�(x))� Ep✓ (�(x)) : moment matching

• Optimise ✓ by gradient descent (likelihood ascent)

✓t+1 � ✓t = ✏r✓ Ep(log p✓)



          Score Matching

� log p✓(x) = logZ✓ + ✓T�(x)

• The score matching eliminates the influence of Z✓

Minimisation of the Fisher Information divergence:

FI(pkp✓) = Ep[krx log p✓(x)�rx log p(x)k2]

FI(pkp✓) = Ep[
1

2
k✓Trx�(x)k2 � ✓T�x�(x)]

Quadratic function of ✓:

Calculated from data, no need to sample p✓ : fast algorithm.



          Score Matching

� log p✓(x) = logZ✓ + ✓T�(x)

• The score matching eliminates the influence of Z✓

Minimisation of the Fisher Information divergence:

FI(pkp✓) = Ep[krx log p✓(x)�rx log p(x)k2]

score matching estimation is identical to maximum likelihood.

Non convex energy Convex energy

Theorem: If � log p✓(x) and � log p(x) are strictly convex then

Eliminating constants does not allow to estimate local minima levels



       II. Renormalisation Group
Kadano↵, Wilson 1970x0

xj�1

xj

xj+1

xJ

• Calculated by decomposing xj�1 into (xj , xj):

) p(xj) =

Z
p(xj�1) dx̄j =

Z
p(xj) p(x̄j |xj) dx̄j

• Given p(x) = Z�1e�U(x) compute

Wilson: approximation with Gaussian integration in x̄j

xj�1 ! xj : average, subsample, normalise.

• Ansatz : p(xj) = Z�1
j e�✓T

j �(xj)

At phase transitions: ✓j = ✓j�1.

how to find it ?

✓j = f(✓j�1) : RG equation on couplings

p(xj) at all scales 2j : regular evolution.



   Inverse Renormalization Group
T. Marchand, M. Ozawa, G. Biroli

xj

xj+1

xj�1

p(xj�1/xj)

) p(x) = p(xJ)
QJ

j=1 p(xj/xj)

p(xj�1) = p(xj) p(x̄j/xj)

x̄J

with normalised variances x̄j ! x̄j/�j

• Pb: estimate physical energies from data.

Coarse to fine:

p(xJ) may be non-convex but low-dimensional.

It is usually Gaussian.

Claims 1,2: p(x̄j |xj) has short range dependencies
in x̄j , and its energy is ”nearly” convex in x̄j .



     Wavelet Orthogonal Bases
Decompose each xj�1 into (xj , x̄j)

xj�1 xj

Fast wavelet transform:
x̄j

Filter
subsample

 m
j,n(u) = 2�dj/2  m(2�ju� n)

n
 m
j,n

o

m,j,n
can define an orthonormal basis of L2(Rd)

by decomposition over translated, and dilated local wavelets

x̄j+1xj+1
Filter
subsample

xj(n,m) = hx, m
j,ni = x ⇤  m

j (2jn)

: in what basis ?

p(x̄j |xj) has short dependencies



     Wavelet Orthogonal Bases

Under review as a conference paper at ICLR 2023

W

WT

W

WTW

WT

Figure 1: Markov wavelet conditional model structure. At each scale j, the fast wavelet transform
W decomposes an image xj�1 into three wavelet channels, x̄j , containing vertical, horizontal, and
diagonal details, and a low-pass channel xj containing a coarse approximation of the image, all
subsampled by a factor of two. At each scale j, we assume a Markov wavelet conditional model, in
which the probability distribution of any wavelet coefficient of x̄j (here, centered on the left eye),
conditioned on values of xj and x̄j in a local spatial neighborhood (regions within red squares), is
independent of all coefficients of x̄j outside this neighborhood.

A fast orthonormal wavelet transform uses a separable convolutional and subsampling operator W
defined with conjugate mirror filters (Mallat, 2009), to iteratively compute wavelet coefficients (see
Figure 1). Let x0 be an image of N ⇥N pixels. For each scale j > 1, the operator W decomposes
xj�1 into:

Wxj�1 = (x̄j ,xj),

where xj is a lower-resolution image and x̄j is an array of three wavelet coefficient images, each
with dimensions N/2j ⇥N/2j , as illustrated in Figure 1. The inverse wavelet transform iteratively
computes xj�1 = WT (x̄j ,xj).

We now introduce the wavelet conditional factorization of probability models. Since W is orthog-
onal, the probability density of xj�1 is also the joint density of (xj , x̄j). It can be factorized by
conditioning on xj :

p(xj�1) = p(xj , x̄j) = p(xj)p(x̄j |xj).

This is performed J times, so that the lowest resolution image xJ is small enough, which yields:

p(x) = p(xJ)
JY

j=1

p(x̄j |xj). (1)

The conditional distributions p(x̄j |xj) specify the dependencies of image details at scale j condi-
tioned on the coarser scale values. They may be represented with a conditional Gibbs energy:

p(x̄j |xj) = Zj(xj)
�1 e�Ej(x̄j |xj), (2)

where Z(xj) is the normalization constant for each xj . The conditional Gibbs energies (2) have been
used in the wavelet conditional renormalization group approach to obtain a stable parameterization
of the probability model even at critical phase transitions, when the parameterization of the global
Gibbs energy becomes singular.

Local wavelet conditional renormalization group models (Marchand et al., 2022) further impose
that p(x̄j |xj) is a conditional Markov random field. That is, the probability distribution of a
wavelet coefficient of x̄j conditioned on values of xj and x̄j in a restricted spatial neighborhood is
independent of all coefficients of x̄j and x̄ outside this neighborhood (see Figure 1). The Hammersley-
Clifford theorem states that this Markov property is equivalent to imposing that Ej can be written
as a sum of potentials, which only depends upon values of x̄j and xj over local cliques (Clifford
& Hammersley, 1971). This decomposition lifts the curse of dimensionality, since one only needs
to estimate potentials over neighborhoods of fixed size, which does not grow with the image size.
To model ergodic stationary physical fields, the local potentials of the Gibbs energy Ej have been
parameterized linearly by using prior physical models.

We generalize Markov wavelet conditional models by parameterizing the conditional score with a
cCNN having small RFs:

�rx̄j log p(x̄j |xj) = rx̄jEj(x̄j |xj). (3)

3

xj�1 xjx̄j

Decompose each xj�1 into (xj , x̄j)

 m
j,n(u) = 2�dj/2  m(2�ju� n)

n
 m
j,n

o

m,j,n
can define an orthonormal basis of L2(Rd)

by decomposition over translated, and dilated local wavelets

xj(n,m) = hx, m
j,ni = x ⇤  m

j (2jn)

Fast wavelet transform:

: in what basis ?

p(x̄j |xj) has short dependencies

F. Guth, Z. Kadokhodaie
E. Simoncelli



  Wavelet Conditional RG Models
T. Marchand, M. Ozawa, G. Biroli

p(x) = p(xJ)
QJ

j=1 p(xj/xj)

Define parameterised models of each p(xj/xj)

p✓̄j (xj/xj) = Z̄�1
j e�✓̄T

j �(xj�1)

with same � but di↵erent ✓̄j at all scales

1. Short range dependencies: ✓̄j has few non-zero parameters

Claims 1,2:

2. Convexity of ✓̄Tj �(xj�1) in x̄j and well conditioned Hessian.

) fast sampling of p✓̄j and fast optimisation of ✓̄j .



  Multiscale Sampling & Energy
x0

xj

xj�1

xj

xj+1

xJ xJ

xj+1

xj�1

T. Marchand, M. Ozawa, G. Biroli

sample p✓J (xJ)

p✓(x) = p✓J (xJ)
QJ

j=1 p✓̄j (xj/xj)

= Z�1
✓ e�U✓(x)

U✓(x) = ✓TJ �(xJ) +
JX

j=1

✓̄Tj �(xj�1)

sample p✓̄J (xJ/xJ)

sample p✓̄j+1
(xj+1/xj+1)

sample p✓̄j (xj/xj)

p✓(x)

Multiscale energy estimation



        Multiscale Gaussian Models

L

|!|

Power spectrum = covariance eigenvalues,
has a power-lay decay for multiscale fields.

|!|�⌘

) long range dependencies.

eigenvalues
K�1 |!|⌘

condition number ⇠ L⌘

K

Turubulent Flows

Figure 2: Gradient descent microcanonical model conditioned on wavelet covariance matrix.

First and second column: data and model sample of Ergodic 1/f process. Third and fourth

column: data and model sample of Turbulence 2d.

Ergodic 1/f process. But visually it is not suitable for Turbulence 2d. The model

fails to capture the intermittency and the oriented structures such as tourbillon. We

discuss in the next section how to improve the model by capturing the non-linear phase

interactions using the wavelet phase harmonics.

3 Wavelet Phase Harmonic Covariance

We are going to capture the phase interactions between wavelet coe�cients. This can

be achieved by the phase harmonics which multiply the phase of wavelet coe�cients

by integers without changing their modulus. The wavelet coe�cients get non-linearly

transposed in frequency. It creates scale interactions when we compute their covari-

ance. Section 3.1 introduces the wavelet phase harmonics. They generalize the local

phase used in [8]. We also reveal their connections with the rectifier non-linearity com-

monly used in convolutional neural network (CNN) in deep learning [22]. Section 3.2

introduces the wavelet phase harmonic covariance. We get a new sparse covariance

matrix which extends the wavelet covariance matrix. Improvements of the gradient-

descent microcanonical models are shown on Turbulence and Texture processes. We

discuss the connection with cross-scale phase statistics in [8] and the gram matrix of

the features maps in CNN [10, 11] to model textures.

3.1 Frequency transposition with wavelet phase harmon-

ics

To capture the phase interaction across scales, we introduce wavelet phase harmon-

ics. By multiplying the phase of complex wavelet coe�cients by integers (aka. phase

harmonics), the frequency of the resulting coe�cients gets transposed in the Fourier

domain. We illustrate this non-linear phenomenon on Gaussian white noise. As wavelet

coe�cients, these coe�cients remain stationary and have variance of the same order.

Fourier analysis on phase harmonics reveals an interesting connection with the rectifier

non-linearity commonly used in CNN.
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Gaussian
model error

where K�1 is the process covariance.

At convergence r2
x log p✓(x) = ✓ = K � 0

p✓(x) = Z�1
✓ e�

1
2x

T ✓ x = Z�1
✓ e�✓T�(x) with �(x) = xxT

Stationarity ) K�1 is Toeplitz diagonalised in Fourier



 Wavelet Transform in Fourier
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Wavelet coe�cients

Orthogonal wavelets decomposes in di↵erent frequency bands

Frequency (Fourier) domain



   Well Conditioned Hessian
• For fields having a power spectrum with power law decay

2�j 2�j+12�j�1

|!|
|!|⌘

condition number ⇠ 1

r2 log p(x̄j |xj) = Kj

Kj

eigenvalues

Wavelet representation of singular operators

Theorem: For Gaussian models of a spectrum with power-law decay

each Kj is a band matrix with a condition number ⇠ 1.

and short range dependencies: low-dimensional model.

) fast sampling of p✓̄j (xj/xj) with Langevin (or MCMC).

= ✓̄j



       Potential Energies in Physics

p(x) = Z�1 e�U(x) with U(x) = 1
2x

TKx+ V (x)

where K = �� is the kinetic energy

|!|
|!|2K

2�j 2�j+12�j�1

Kj

The non-convexity appears at lower frequencies

r2 log p(x) = K +r2V (x) is usually not convex.

because Kj is strongly positive.

r2 log p(x̄j |xj) = Kj +r2V̄j(xj�1) is ”often” positive.

V (x) is the non-convex potential, creating scale interactions



           Scalar Potential Models
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FIG. 5. Mean value of the field (magnetization) of the '4

model from the training data set. Three state points studied
in this paper are shown in the dashed lines (� = 0.50, 0.67,
and 0.76).

B. The '4 field

The '4 field theory plays a central role in the theory
of critical phenomena [10]. It has been introduced to
describe the second-order ferromagnetic phase transition
(in this case the field ' represents the magnetization pro-
file). It was later understood, and explained using RG,
that such field theory is also a good model for the liquid-
gas phase transition, which is in the same universality
class.
Since the '4 field theory is the simplest model which
contains all the key ingredients of standard second-order
phase transitions, such as large scale collective behav-
iors, critical properties, long-range correlations, it has
also played a central role in testing new techniques and
ideas [1]. The generalization to more complex cases, e.g.
to phase transitions associated to more general symmetry
breaking and represented by non-scalar field theories, is
often straightforward. Here, we follow the same strategy
of focusing on the '4 field theory as a central example,
and apply the WI-RG method to it in two dimensions.

1. The model and its phase transition

The microscopic '4 model is given by [10]

H0('0) =
�

2
'T

0 '0 +
X

i=1

v0('0(i)), (26)

where 'T
0 '0 =

P
hi,i0i('0(i) � '0(i0))2 with a sum of

lattice neighbors, and v0('0) = '4
0 � (1 + 2�)'2

0. In this
way one sees explicitely that the Hamiltonian contains
two competing terms: a local double-well potential and
the discrete Laplacian. This model is known to undergo
a phase transition in the thermodynamics limit for � =
�t

c ' 0.68 [5]: for � > �t
c the system is in the ordered

phase whereas for � < �t
c the system is disordered.

FIG. 6. Realizations of the true (left) and generated (right)
fields for � = 0.60, 0.67, and 0.76.

Henceforth we perform all the numerical experiments
using the Wasting-Metropolis algorithm and considering
system of linear size ` = 32. Figure 5 shows the mean

of the magnetization, defined as m = |
P`2

i=1 '0(i)|/`2,
as a function of temperature. The evolution of m shows
the increase of magnetization at low temperature. Due
to finite size e↵ects [2] the critical value of � for ` = 32 is
�c ' 0.67, as shown in the Appendix E by studying the
behavior of the susceptibility. We focus on three values
of �: � = 0.6, � = �c = 0.67 and � = 0.76 which cor-
respond respectively to the three di↵erent regimes of the
model (disordered, critical and ordered) and are shown
by vertical dashed line in Fig. 5. For each value of �, we
generate R = 10000 realizations of the field '0 which we
shall use as training dataset to perform the WI-RG.

2. WI-RG Results

We now show the results of WI-RG applied to the '4-
model. In the implementation of WI-RG we choose win-
dowed Legendre polynomials as basis function um(t) to
decompose the scalar potential in eq. (??). See App. D 3
for more details on the numerics. We first show in Fig. 6
realization of the fields obtained from WI-RG (right pan-
els) for the three di↵erent values of � discussed above.
By comparing them to the ones of the true process in the

phase transition

� = �c
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FIG. 5. Mean value of the field (magnetization) of the '4

model from the training data set. Three state points studied
in this paper are shown in the dashed lines (� = 0.50, 0.67,
and 0.76).

B. The '4 field

The '4 field theory plays a central role in the theory
of critical phenomena [10]. It has been introduced to
describe the second-order ferromagnetic phase transition
(in this case the field ' represents the magnetization pro-
file). It was later understood, and explained using RG,
that such field theory is also a good model for the liquid-
gas phase transition, which is in the same universality
class.
Since the '4 field theory is the simplest model which
contains all the key ingredients of standard second-order
phase transitions, such as large scale collective behav-
iors, critical properties, long-range correlations, it has
also played a central role in testing new techniques and
ideas [1]. The generalization to more complex cases, e.g.
to phase transitions associated to more general symmetry
breaking and represented by non-scalar field theories, is
often straightforward. Here, we follow the same strategy
of focusing on the '4 field theory as a central example,
and apply the WI-RG method to it in two dimensions.

1. The model and its phase transition

The microscopic '4 model is given by [10]

H0('0) =
�

2
'T

0 '0 +
X

i=1

v0('0(i)), (26)

where 'T
0 '0 =

P
hi,i0i('0(i) � '0(i0))2 with a sum of

lattice neighbors, and v0('0) = '4
0 � (1 + 2�)'2

0. In this
way one sees explicitely that the Hamiltonian contains
two competing terms: a local double-well potential and
the discrete Laplacian. This model is known to undergo
a phase transition in the thermodynamics limit for � =
�t

c ' 0.68 [5]: for � > �t
c the system is in the ordered

phase whereas for � < �t
c the system is disordered.

FIG. 6. Realizations of the true (left) and generated (right)
fields for � = 0.60, 0.67, and 0.76.

Henceforth we perform all the numerical experiments
using the Wasting-Metropolis algorithm and considering
system of linear size ` = 32. Figure 5 shows the mean

of the magnetization, defined as m = |
P`2

i=1 '0(i)|/`2,
as a function of temperature. The evolution of m shows
the increase of magnetization at low temperature. Due
to finite size e↵ects [2] the critical value of � for ` = 32 is
�c ' 0.67, as shown in the Appendix E by studying the
behavior of the susceptibility. We focus on three values
of �: � = 0.6, � = �c = 0.67 and � = 0.76 which cor-
respond respectively to the three di↵erent regimes of the
model (disordered, critical and ordered) and are shown
by vertical dashed line in Fig. 5. For each value of �, we
generate R = 10000 realizations of the field '0 which we
shall use as training dataset to perform the WI-RG.

2. WI-RG Results

We now show the results of WI-RG applied to the '4-
model. In the implementation of WI-RG we choose win-
dowed Legendre polynomials as basis function um(t) to
decompose the scalar potential in eq. (??). See App. D 3
for more details on the numerics. We first show in Fig. 6
realization of the fields obtained from WI-RG (right pan-
els) for the three di↵erent values of � discussed above.
By comparing them to the ones of the true process in the

� < �c
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FIG. 7. RG Flow of the potential as the function of the scale
for � < �c (� = 0.5).

FIG. 8. RG Flow of the potential as the function of the scale
for � = �c (i.e. � = 0.67)

left panels, we find an excellent agreement even at � = �c

which is the most di�cult case given the long-range crit-
ical correlations.

We then show in Fig. 7 the WI-RG evolution of the po-
tential vj(') at each scale for � < �c. Note that in order
to compare it to vdw(') we choose the value of ↵ in eq.
(??) such that Kj has minimum eigenvalue equal to zero
(the corresponding eigenvector is uniform, so that Kj in-
deed plays the same role of the Laplacian by favoring a
constant value of the field). The starting potential is a
single well centered in zero since the distribution in the
disordered phase is Gaussian at the coarsest scale. Dur-
ing the WI-RG flow vj progressively acquires a double
well shape. This figure vividly illustrates the inverse RG
flow induced by WI-RG and looks like a backward movie
of the ones obtained by Non Perturbative (direct) RG [1].
The analogous WI-RG flow for � = �c is presented in Fig.
8. One finds that the potential approaches a form which
remains stable for several WI-RG steps: this is the man-
ifestation of the critical fixed point of the WI-RG flow
associated to the ferromagnetic phase transition.

Need to show the distribution of '0 rescaled at the
critical point to show the support [�w, w] that is used.
It has a short tail contrarily to Cosmology.

We then show the accuracy of the reconstruction ob-
tained by WI-RG of the microscopic Hamiltonian. As
before, we focus on � = �c which is the most challeng-

FIG. 9. Comparison for � = �c of vdw of the original Hamil-
tonian (orange) and vO obtained from the WI-RG.

FIG. 10. Comparison for � = �c of the eigenvalues of K of
the original Hamiltonian (orange) and the ones ofK0 obtained
from the WI-RG.

ing case since one has to reconstruct a microscopic local
Hamiltonian starting from a long-ranged correlated field.
The comparison between the reconstructed potential at
the finest scale and the original one, vdw(') is shown in
Fig. 9. The agreement is excellent. The di↵erence at the
boundary is due to the window function (between �2
and 2) and the lack of training data for those values of
the fields. This di↵erence can be cured by increasing the
training set size and, accordingly, the size of the window
function. We now turn to the matrix K, which gives the
other contribution to the original Hamiltonian. The orig-
inal K and its reconstruction have the same eigenvectors
since they are both diagonal in Fourier space. In order
to compare them, we therefore focus on their eigenvalues.
In Fig. 10 we compare the spectrum of the reconstructed
operator K and its original counterpart corresponding
to a discrete version of the Laplacian as a function of
the Fourier wave-vector (we chose as for the potential a
value of ↵, the Gauge parameter, such that the lowest
eigenvalue is zero). Also in this case, we find an excellent
agreement.
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FIG. 12. Top: Histograms of '0 of the Euclid syntheses com-
pared to the training dataset (left with L1, right without L1.
Middle: Histograms of wk=1

1 . Bottom: histograms of wk=3
1 .

't
0 be the fine scale field that is evolving with the MCMC

simulation. Let X(t) = | 1
`2

P
i 't

0(i)|. In Fig. 13 we
show the autocorrelation A(t) for the MCMC perfomed
directly on K0:

A(t) =
X(t)X(0) � X

2

X2 � X
2 , (27)

where (· · · ) denotes the time average under the station-
ary state. The top left panel show results for ` = 32 and
di↵erent � approaching the critical point at �c. Clearly
the decorrelation time of the MCMC increases. At the
critical point this time-scale diverges as `z with z ' 2
[10].

In the WI-RG the MCMC is performed at each scale
on the wavelet coe�cients wj . In order to compare the
two methods, we show in the top right panel of Fig. 13
A(t) the autocorrelation function of the evolution of wt

j

X(t) = (3`2�j)�d
X

i,k

|wt
j(i, k)|. (28)

The results show that, remarkably, the WI-RG is not
a↵ected at all by the critical slowing down.
We now focus on the instability issue.

The bottom left panel of Fig. 13 shows the di↵erence
in norm, kKq

0 � K0ks, between the estimated K and the
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FIG. 13. TOP-LEFT: The same one but only with �  �c.
TOP-RIGHT: Same than for the Gaussian case, i.e. the curve
for the decorrelation of wavelet coe�cient at di↵erent scales.
BOTTOM-LEFT and RIGHT: Same than for the Gaussian
case, use only ⇠ = 8, 16, 32 so that are not too crowded.

FIG. 14. LEFT: Decorrelation time as a function of ⇠ for fine
grid and WI-RG estimated from the previous figures. RIGHT
q⇤ as a function of ⇠ for fine grid and WI-RG estimated from
the previous figures.

true one K0 during the gradient descent of the maximum
likelihood estimation. The value of ✏ used is the largest
one possible to prevent numerical instability and to ob-
tain a good accuracy. Again, we find that approaching
the critical point the number of gradient steps required
to reach a fixed accuracy, say of 10�2, becomes increas-
ingly large for the fine grid method. This is due to the
fact that the required ✏ becomes increasingly smaller. In
the bottom right panel of Fig. 13 we show the WI-RG
counterpart. As for the MCMC, the improvement is re-
markable since the curves for WI-RG are not a↵ected at
all by the presence of the critical point.
A complementary way to illustrate these results is to
show the timescales needed for the fine-grid method and
the WI-RG to reach a prescribed accuracy. We call
⌧m the time such that A(⌧m) = 1/e and q⇤ the num-
ber of steps required for the gradient descent to reach
kKq

0 �K0ks = 10�2 should we normalize?. In Fig. 14 we
show ⌧m (left panel) and q⇤ (right panel) as a function
of ⇠, the correlation length of the field '0. This figure
vividly illustrates the for long-ranged fields, i.e. for larger
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di↵erent � approaching the critical point at �c. Clearly
the decorrelation time of the MCMC increases. At the
critical point this time-scale diverges as `z with z ' 2
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In the WI-RG the MCMC is performed at each scale
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true one K0 during the gradient descent of the maximum
likelihood estimation. The value of ✏ used is the largest
one possible to prevent numerical instability and to ob-
tain a good accuracy. Again, we find that approaching
the critical point the number of gradient steps required
to reach a fixed accuracy, say of 10�2, becomes increas-
ingly large for the fine grid method. This is due to the
fact that the required ✏ becomes increasingly smaller. In
the bottom right panel of Fig. 13 we show the WI-RG
counterpart. As for the MCMC, the improvement is re-
markable since the curves for WI-RG are not a↵ected at
all by the presence of the critical point.
A complementary way to illustrate these results is to
show the timescales needed for the fine-grid method and
the WI-RG to reach a prescribed accuracy. We call
⌧m the time such that A(⌧m) = 1/e and q⇤ the num-
ber of steps required for the gradient descent to reach
kKq

0 �K0ks = 10�2 should we normalize?. In Fig. 14 we
show ⌧m (left panel) and q⇤ (right panel) as a function
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FIG. 5. Mean value of the field (magnetization) of the '4

model from the training data set. Three state points studied
in this paper are shown in the dashed lines (� = 0.50, 0.67,
and 0.76).

B. The '4 field

The '4 field theory plays a central role in the theory
of critical phenomena [10]. It has been introduced to
describe the second-order ferromagnetic phase transition
(in this case the field ' represents the magnetization pro-
file). It was later understood, and explained using RG,
that such field theory is also a good model for the liquid-
gas phase transition, which is in the same universality
class.
Since the '4 field theory is the simplest model which
contains all the key ingredients of standard second-order
phase transitions, such as large scale collective behav-
iors, critical properties, long-range correlations, it has
also played a central role in testing new techniques and
ideas [1]. The generalization to more complex cases, e.g.
to phase transitions associated to more general symmetry
breaking and represented by non-scalar field theories, is
often straightforward. Here, we follow the same strategy
of focusing on the '4 field theory as a central example,
and apply the WI-RG method to it in two dimensions.

1. The model and its phase transition

The microscopic '4 model is given by [10]

H0('0) =
�

2
'T

0 '0 +
X

i=1

v0('0(i)), (26)

where 'T
0 '0 =

P
hi,i0i('0(i) � '0(i0))2 with a sum of

lattice neighbors, and v0('0) = '4
0 � (1 + 2�)'2

0. In this
way one sees explicitely that the Hamiltonian contains
two competing terms: a local double-well potential and
the discrete Laplacian. This model is known to undergo
a phase transition in the thermodynamics limit for � =
�t

c ' 0.68 [5]: for � > �t
c the system is in the ordered

phase whereas for � < �t
c the system is disordered.

FIG. 6. Realizations of the true (left) and generated (right)
fields for � = 0.60, 0.67, and 0.76.

Henceforth we perform all the numerical experiments
using the Wasting-Metropolis algorithm and considering
system of linear size ` = 32. Figure 5 shows the mean

of the magnetization, defined as m = |
P`2

i=1 '0(i)|/`2,
as a function of temperature. The evolution of m shows
the increase of magnetization at low temperature. Due
to finite size e↵ects [2] the critical value of � for ` = 32 is
�c ' 0.67, as shown in the Appendix E by studying the
behavior of the susceptibility. We focus on three values
of �: � = 0.6, � = �c = 0.67 and � = 0.76 which cor-
respond respectively to the three di↵erent regimes of the
model (disordered, critical and ordered) and are shown
by vertical dashed line in Fig. 5. For each value of �, we
generate R = 10000 realizations of the field '0 which we
shall use as training dataset to perform the WI-RG.

2. WI-RG Results

We now show the results of WI-RG applied to the '4-
model. In the implementation of WI-RG we choose win-
dowed Legendre polynomials as basis function um(t) to
decompose the scalar potential in eq. (??). See App. D 3
for more details on the numerics. We first show in Fig. 6
realization of the fields obtained from WI-RG (right pan-
els) for the three di↵erent values of � discussed above.
By comparing them to the ones of the true process in the

phase transition

� = �c
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model from the training data set. Three state points studied
in this paper are shown in the dashed lines (� = 0.50, 0.67,
and 0.76).
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of critical phenomena [10]. It has been introduced to
describe the second-order ferromagnetic phase transition
(in this case the field ' represents the magnetization pro-
file). It was later understood, and explained using RG,
that such field theory is also a good model for the liquid-
gas phase transition, which is in the same universality
class.
Since the '4 field theory is the simplest model which
contains all the key ingredients of standard second-order
phase transitions, such as large scale collective behav-
iors, critical properties, long-range correlations, it has
also played a central role in testing new techniques and
ideas [1]. The generalization to more complex cases, e.g.
to phase transitions associated to more general symmetry
breaking and represented by non-scalar field theories, is
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of focusing on the '4 field theory as a central example,
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�t

c ' 0.68 [5]: for � > �t
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c the system is disordered.
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fields for � = 0.60, 0.67, and 0.76.

Henceforth we perform all the numerical experiments
using the Wasting-Metropolis algorithm and considering
system of linear size ` = 32. Figure 5 shows the mean

of the magnetization, defined as m = |
P`2

i=1 '0(i)|/`2,
as a function of temperature. The evolution of m shows
the increase of magnetization at low temperature. Due
to finite size e↵ects [2] the critical value of � for ` = 32 is
�c ' 0.67, as shown in the Appendix E by studying the
behavior of the susceptibility. We focus on three values
of �: � = 0.6, � = �c = 0.67 and � = 0.76 which cor-
respond respectively to the three di↵erent regimes of the
model (disordered, critical and ordered) and are shown
by vertical dashed line in Fig. 5. For each value of �, we
generate R = 10000 realizations of the field '0 which we
shall use as training dataset to perform the WI-RG.

2. WI-RG Results

We now show the results of WI-RG applied to the '4-
model. In the implementation of WI-RG we choose win-
dowed Legendre polynomials as basis function um(t) to
decompose the scalar potential in eq. (??). See App. D 3
for more details on the numerics. We first show in Fig. 6
realization of the fields obtained from WI-RG (right pan-
els) for the three di↵erent values of � discussed above.
By comparing them to the ones of the true process in the
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FIG. 7. RG Flow of the potential as the function of the scale
for � < �c (� = 0.5).

FIG. 8. RG Flow of the potential as the function of the scale
for � = �c (i.e. � = 0.67)

left panels, we find an excellent agreement even at � = �c

which is the most di�cult case given the long-range crit-
ical correlations.

We then show in Fig. 7 the WI-RG evolution of the po-
tential vj(') at each scale for � < �c. Note that in order
to compare it to vdw(') we choose the value of ↵ in eq.
(??) such that Kj has minimum eigenvalue equal to zero
(the corresponding eigenvector is uniform, so that Kj in-
deed plays the same role of the Laplacian by favoring a
constant value of the field). The starting potential is a
single well centered in zero since the distribution in the
disordered phase is Gaussian at the coarsest scale. Dur-
ing the WI-RG flow vj progressively acquires a double
well shape. This figure vividly illustrates the inverse RG
flow induced by WI-RG and looks like a backward movie
of the ones obtained by Non Perturbative (direct) RG [1].
The analogous WI-RG flow for � = �c is presented in Fig.
8. One finds that the potential approaches a form which
remains stable for several WI-RG steps: this is the man-
ifestation of the critical fixed point of the WI-RG flow
associated to the ferromagnetic phase transition.

Need to show the distribution of '0 rescaled at the
critical point to show the support [�w, w] that is used.
It has a short tail contrarily to Cosmology.

We then show the accuracy of the reconstruction ob-
tained by WI-RG of the microscopic Hamiltonian. As
before, we focus on � = �c which is the most challeng-

FIG. 9. Comparison for � = �c of vdw of the original Hamil-
tonian (orange) and vO obtained from the WI-RG.

FIG. 10. Comparison for � = �c of the eigenvalues of K of
the original Hamiltonian (orange) and the ones ofK0 obtained
from the WI-RG.

ing case since one has to reconstruct a microscopic local
Hamiltonian starting from a long-ranged correlated field.
The comparison between the reconstructed potential at
the finest scale and the original one, vdw(') is shown in
Fig. 9. The agreement is excellent. The di↵erence at the
boundary is due to the window function (between �2
and 2) and the lack of training data for those values of
the fields. This di↵erence can be cured by increasing the
training set size and, accordingly, the size of the window
function. We now turn to the matrix K, which gives the
other contribution to the original Hamiltonian. The orig-
inal K and its reconstruction have the same eigenvectors
since they are both diagonal in Fourier space. In order
to compare them, we therefore focus on their eigenvalues.
In Fig. 10 we compare the spectrum of the reconstructed
operator K and its original counterpart corresponding
to a discrete version of the Laplacian as a function of
the Fourier wave-vector (we chose as for the potential a
value of ↵, the Gauge parameter, such that the lowest
eigenvalue is zero). Also in this case, we find an excellent
agreement.
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Figure 3. Comparison between training and generated samples for
'4 energies. In columns: training samples, generated samples,
histograms of marginal distributions p(x[i]) and power spectrum.
In rows: disorganized state � = 0.50, critical point � = 0.68 ⇡
�c, and organized state � = 0.76.

becomes narrower, as predicted by Proposition 3.1. Further-
more, the condition number of the Hessian becomes smaller
as eigenvalues concentrate towards their mean.

As shown in Equation (12), both the quadratic part K and
the scalar potential v contribute to the Hessian. As a way to
visualize both contributions, we define the equivalent scalar
potential v0 as v0(t) = v(t) + Tr(K)

2d t2. It corresponds to
extracting the mean quadratic value Tr(K)/2d kxk2 from
the quadratic part and reinterpreting it as a scalar potential.
This allows visualizing the average energy on a pixel value
when neglecting spatial correlations. The right panel of
Figure 4 compares these equivalent scalar potentials for the
energy Ej of xj and the conditional energy Ēj . It shows that
the non-convex double-well potential in the global energy
becomes convex after the conditioning. It verifies Proposi-
tion 3.1, as the mean quadratic value becomes larger when
we restrict K to a subspace of high-frequency signals.

We also verify the sampling efficiency predicted by Proposi-
tion 2.2. As we cannot evaluate the KL divergences ✏̄Sj , we
rather compute the decorrelation mixing time ⌧̄ , a measure
of the number of steps of conditional MALA to reach a
given fixed error threshold averaged over all scales j. The
precise definition is given in Appendix C.3. We compare
it with the decorrelation mixing time ⌧ of MALA on the
non-convex global energy E.

Sampling maps of size
p
d⇥

p
d from the global '4 energy

E at the critical temperature requires a number of steps
⌧ ⇠ d1.0 (Zinn-Justin, 2021). This phenomena is known
as critical slowing down (Podgornik, 1996; Sethna, 2021),

Figure 4. Conditional strong log-concavity of '4 at critical tem-
perature. All scales j yield similar results. Left: distribution of
eigenvalues of r2

x̄j
Ē✓̄j

for different frequency bandwidths (j = 1
is shown). Right: equivalent scalar potentials vj and v̄j (j = 3 is
shown).

Figure 5. Mixing times for direct (⌧ ) and conditional (⌧̄ ) sampling
for '4 at critical temperature.

a consequence of long-range correlations. We numerically
show that our algorithm does not suffer from it. Figure 5 in-
deed demonstrates an empirical scaling ⌧̄ ⇠ d0.35. Note that
this is not directly comparable with Proposition 2.2 as the
decorrelation mixing time defines a different convergence
rate than the KL mixing time.

4.3. Application to Cosmological Data

We now apply our algorithm to generate high-resolution
weak lensing convergence maps (Bartelmann & Schneider,
2001; Kilbinger, 2015) with an explicit probability model.
Weak lensing convergence maps measure the bending of
light near large gravitational masses on two-dimensional
slices of the universe. We used simulated convergence maps
computed by the Columbia lensing group (Zorrilla Matilla
et al., 2016; Gupta et al., 2018) as training data. They simu-
late the next generation outer-space telescope Euclid of the
European Space Agency (Laureijs et al., 2011), which will
be launched in 2023 to accurately determine the large scale
geometry of the universe governed by dark matter. Estimat-
ing the probability distribution of such maps is therefore an
outstanding problem (Marchand et al., 2022). We demon-
strate that the CSLC property is surprisingly verified in this
real-world example, and can be used to efficiently model
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becomes narrower, as predicted by Proposition 3.1. Further-
more, the condition number of the Hessian becomes smaller
as eigenvalues concentrate towards their mean.

As shown in Equation (12), both the quadratic part K and
the scalar potential v contribute to the Hessian. As a way to
visualize both contributions, we define the equivalent scalar
potential v0 as v0(t) = v(t) + Tr(K)

2d t2. It corresponds to
extracting the mean quadratic value Tr(K)/2d kxk2 from
the quadratic part and reinterpreting it as a scalar potential.
This allows visualizing the average energy on a pixel value
when neglecting spatial correlations. The right panel of
Figure 4 compares these equivalent scalar potentials for the
energy Ej of xj and the conditional energy Ēj . It shows that
the non-convex double-well potential in the global energy
becomes convex after the conditioning. It verifies Proposi-
tion 3.1, as the mean quadratic value becomes larger when
we restrict K to a subspace of high-frequency signals.

We also verify the sampling efficiency predicted by Proposi-
tion 2.2. As we cannot evaluate the KL divergences ✏̄Sj , we
rather compute the decorrelation mixing time ⌧̄ , a measure
of the number of steps of conditional MALA to reach a
given fixed error threshold averaged over all scales j. The
precise definition is given in Appendix C.3. We compare
it with the decorrelation mixing time ⌧ of MALA on the
non-convex global energy E.

Sampling maps of size
p
d⇥

p
d from the global '4 energy

E at the critical temperature requires a number of steps
⌧ ⇠ d1.0 (Zinn-Justin, 2021). This phenomena is known
as critical slowing down (Podgornik, 1996; Sethna, 2021),

Figure 4. Conditional strong log-concavity of '4 at critical tem-
perature. All scales j yield similar results. Left: distribution of
eigenvalues of r2

x̄j
Ē✓̄j

for different frequency bandwidths (j = 1
is shown). Right: equivalent scalar potentials vj and v̄j (j = 3 is
shown).

Figure 5. Mixing times for direct (⌧ ) and conditional (⌧̄ ) sampling
for '4 at critical temperature.

a consequence of long-range correlations. We numerically
show that our algorithm does not suffer from it. Figure 5 in-
deed demonstrates an empirical scaling ⌧̄ ⇠ d0.35. Note that
this is not directly comparable with Proposition 2.2 as the
decorrelation mixing time defines a different convergence
rate than the KL mixing time.

4.3. Application to Cosmological Data

We now apply our algorithm to generate high-resolution
weak lensing convergence maps (Bartelmann & Schneider,
2001; Kilbinger, 2015) with an explicit probability model.
Weak lensing convergence maps measure the bending of
light near large gravitational masses on two-dimensional
slices of the universe. We used simulated convergence maps
computed by the Columbia lensing group (Zorrilla Matilla
et al., 2016; Gupta et al., 2018) as training data. They simu-
late the next generation outer-space telescope Euclid of the
European Space Agency (Laureijs et al., 2011), which will
be launched in 2023 to accurately determine the large scale
geometry of the universe governed by dark matter. Estimat-
ing the probability distribution of such maps is therefore an
outstanding problem (Marchand et al., 2022). We demon-
strate that the CSLC property is surprisingly verified in this
real-world example, and can be used to efficiently model
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Multiscale with score matching

The interaction energies ✓̄j ? �(x̄j�1) of all p✓̄j (xj |xj)



      Modeling Weak Lensing

Conditionally Strongly Log-Concave Generative Models

Figure 6. Comparison between training and generated samples for
weak-lensing maps. Upper left: histograms of marginal distri-
butions p(x[i]). Lower left: power spectrum. Center: training
samples. Right: generated samples.

and generate these complex fields.

We use the same models and algorithms as for the '4 energy.
The experimental setting is detailed in Appendix C. Figure 6
shows that our generated samples are visually highly similar
to the training data. Quantitatively, they have nearly the
same power spectrum. The marginal distribution of all x[i]
are also nearly the same, with a long tail corresponding to
high amplitude peaks, which are typically difficult to re-
produce. As opposed to microcanonical simulations with
moment-matching algorithms (Cheng & Ménard, 2021), we
compute an explicit probability distribution model, which is
exponential. As a maximum-entropy model, it has a higher
entropy than the true distribution, and therefore does not suf-
fer from lack of diversity. By relying on the CSLC property,
we can use the fast score-matching algorithm and compute
128⇥ 128 images, at four times the 32⇥ 32 resolution than
with a maximum-likelihood algorithm used in Marchand
et al. (2022).

Figure 7 shows the equivalent scalar potentials of the condi-
tional energies at all scales, which are all convex and thus
verify the CSLC property of weak lensing model. It demon-
strates that this property can be used to efficiently model
and generate high-resolution complex data.

5. Discussion

We introduced conditionally strongly log-concave (CSLC)
models and proved that they lead to efficient learning with
score matching and sampling with MALA, while control-
ling errors. These models rely on iterated orthogonal pro-
jections of the data that are adapted to its distribution. We
showed mathematically and numerically that complex multi-
scale physical fields satisfy the CSLC property with wavelet

Figure 7. Equivalent scalar potentials v̄j at each scale j for weak-
lensing maps (normalized for viewing purposes).

packet projectors. The argument is general and relies on
the presence of a quadratic (kinetic) energy term which en-
sures strong log-concavity at high-frequencies. It provides
high-quality and efficient generation of high-resolution
fields even when the underlying distribution is unknown.
The CSLC property guarantees diverse generations without
memorization issues, which is critical in scientific applica-
tions.

CSLC models can be extended by introducing latent vari-
ables. The guarantees of Section 2 extend to the case where
the data is a marginal of a CSLC distribution. A notable
example is a score-based diffusion model, for which the data
x = x0 is a marginal of a higher-dimensional process (xt)t
whose conditionals p(xt��|xt) are approximately Gaussian
white when � is small, thus introducing a tradeoff between
the number of terms in the CSLC decomposition and the
condition number of its factors. Score diffusion is a generic
transformation, but it assumes that the score rxt

log p(xt)
can be estimated with deep networks at any t � 0 (Song
et al., 2021; Ho et al., 2020). For high-resolution images,
the score estimation often uses conditional multiscale de-
compositions with or without wavelet transforms (Saharia
et al., 2021; Ho et al., 2022; Dhariwal & Nichol, 2021; Guth
et al., 2022). Understanding the log-concavity properties of
natural image distributions under such transformations is a
promising research avenue to understand the effectiveness
of score-based diffusion models.
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FIG. 5: Comparisons of the logarithm of the matter density field log(⇢) in Quijote simulation maps and in our statistically
synthesized maps, showing how well the syntheses reproduce the statistical properties of log(⇢) in the Quijote maps. The error
bars correspond to the realization-per-realization dispersion. a) A map of log(⇢) from the Quijote simulations. b) A map of log(⇢)
synthesized based on WPH statistics of a sample of 30 Quijote maps (see Sec. IV A). c)–h) Statistics for log(⇢) estimated using

300 maps from the Quijote simulations (orange lines) and 300 syntheses (dashed blue lines). c) Power spectrum, d) standard
deviation of the power spectrum, e) pixel value PDF on a linear scale, f) bispectrum in the flattened triangle configuration,

B(k/2, k/2, k), g) bispectrum in the squeezed triangle configuration, B(k, k, k3), for k3 ⌧ 1, and h) pixel value PDF on a
logarithmic scale.

�(⇢) to match those estimated from Quijote simulations. How-
ever, something slightly di↵erent is implemented in practice so
some details are in order. Regarding the target WPH moments,
they are collected in a vector �target obtained by averaging (a
sample version of) Eq. (6) over a set of Nlearn = 30 Quijote
maps with periodic boundary conditions. Each Quijote map
has a surface area of 1 (Gpc/h)2 and is sampled on a grid of
256⇥256 pixels. We found empirically that a set of Nlearn = 30
maps was large enough to estimate the WPH coe�cients up to
J = 6 with an accuracy su�cient for our purposes. We could

have used a larger training set but we restrained ourselves to
Nlearn = 30 in order to illustrate that our method performs well
with a small number of examples.

Regarding the synthesis process itself, maps are not pro-
duced individually but in batches of Nbatch maps. We start from
Nbatch maps ⇢1, . . . , ⇢Nbatch of size 256 ⇥ 256 obtained as inde-
pendent Gaussian white noise realizations. Then, their pixel

Matter density Turbulences

✓j�1

✓j



CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

xj

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

xj+1
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x̄1
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- Sparse wavelet coe�cients

Geometric structures:

- Strongly dependant across
scales and angles.

p(xj/xj) = p(xj/x` , ` > j)

            III- Modeling Scale Dependencies



               Modeling Scale Dependencies
p(x̄j/xj) = p(x̄j/x̄j0 , j0>j)Must model

E
⇣
xj(u) xj0(u� ⌧)

⌘
⇡ 0 if j 6= j0

because  m
j and  m0

j0 are supported in di↵erent frequency bands.

because their phase oscillate at di↵erent rate since

the energy of

Linear models ✓T� are matching moments: Ep✓ (�(x)) = Ep(�(x))

What moments should we choose ?

• Gaussian model: �(x) = xxT , �(x) = Wx (Wx)T

in a wavelet basis Wx = (x̄j)j .

For x stationary, the xj = x ?  m
j are not correlated across scales:

Gaussian models do not capture scale dependencies.)



              Scattering-Gaussian Models

• Eliminates phases with modulus: (x , |Wx|) = (x, |x̄j |)j

p✓(x) = Z✓
�1 e�(x,|Wx|) ✓ (x,|Wx|)T

• Scattering-Gaussian model: Etienne Lempereur

with �(x) = (x , |Wx|) (x , |Wx|)Tp✓ = Z✓
�1 e�✓T�(x)

) �(x) =
⇣ x(u)x(u� ⌧) x(u) |x̄j(u� ⌧)|

x(u) |x̄j(u� ⌧)| |x̄j(u)| |x̄j0(u� ⌧)|
⌘

j,j0,⌧

Large matrix because modulus have long range correlations.



              Scattering-Gaussian Models

• Eliminates phases with modulus: (x , |Wx|) = (x, |x̄j |)j

p✓(x) = Z✓
�1 e�(x,|Wx|) ✓ (x,|Wx|)T

• Scattering-Gaussian model: Etienne Lempereur

eliminates long range correlations• Wavelet: W (x , |Wx|)

e�(x) =
⇣ |x̄j(u)|2 x̄j(u) |x̄j0(u)|

x̄j(u) |x̄j0(u)| |x̄j | ?  k(u) |x̄j0 | ?  k(u)

⌘

j,j0,k

• ✓̃ and e�(x) are reduced to O(log3 d) diagonal coe�cients:

p✓ = Z✓
�1 e�✓̃T e�(x) with e�(x) = (Wx , W |Wx|) (Wx , W |Wx|)T

and ✓̃ = W✓WT of reduced dimension



        Generation from Scattering Covar.

x0

E. Allys, F. Boulanger, A. Brochard, J. Bruna, S. Chen, R. Morel
B. Ménard, R. Morel, G. Rochette, S. Zhang

Original images of dimension d = 510
4

Reproduces moments of order 3 (bispectrum) and 4 (trispectrum)

: only 1 sample

Generated with models having 500 parameters from 1 sample
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    Scattering-Gaussian Model
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interaction

interaction model
⇢

⇢

⇢

⇢

x1

x2

x3

x4x4

Covariance

Covariance

Covariance

Covariance

with ⇢(↵) = (↵ , |↵|)⇢WxW

We can replace covariances by random projections and ReLU

A low-dimensional deep networks without learning
⇢
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    Deep Scattering Network

interaction

interaction

interaction

interaction model
⇢

⇢

⇢

⇢

x1

x2

x3

x4x4

with ⇢(↵) = (↵ , |↵|)⇢WxW

with �(x) = ⇢RW ⇢Wx

⇢R ⇢R⇢R⇢R

: last hidden network layer

�(x)⇢R

� log p✓(x) = ✓T�(x) + logZ✓ : learn only last linear filter

R: random matrix



              Conclusion

• Build models from interaction energies across scales : wavelet 
conditional renormalisation group.  

• When are interaction energies convex (or nearly) ? 

• Scattering-Gaussian models: interaction energies captured by 
wavelet modulus correlations across scales: turbulence, active 
matter…
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